Top Related Projects
Quick Overview
Eclair is an implementation of the Lightning Network protocol, designed to work with Bitcoin. It's a Scala-based project that aims to provide a robust, scalable, and user-friendly Lightning Network node and wallet solution. Eclair supports both on-chain and off-chain Bitcoin transactions, making it a versatile tool for developers and users alike.
Pros
- Written in Scala, offering strong type safety and functional programming features
- Supports both mainnet and testnet Bitcoin networks
- Provides a comprehensive API for developers to integrate Lightning Network functionality
- Actively maintained with regular updates and improvements
Cons
- Requires some technical knowledge to set up and operate
- Documentation could be more extensive for newcomers
- Limited GUI options compared to some other Lightning implementations
- Scala may have a steeper learning curve for developers not familiar with the language
Code Examples
- Creating a new Lightning Network channel:
val channelParams = ChannelParams(
localParams = LocalParams(...),
channelFeatures = ChannelFeatures(...)
)
val channel = Channel.create(channelParams, ...)
- Sending a payment through the Lightning Network:
val paymentRequest = PaymentRequest.read("lnbc...")
val payment = SendPayment(
amount = MilliSatoshi(10000),
paymentHash = paymentRequest.paymentHash,
nodeId = paymentRequest.nodeId,
routeParams = RouteParams.default
)
nodeParams.db.payments.addOutgoingPayment(payment)
sender ! payment
- Handling incoming Lightning Network payments:
def receive: Receive = {
case BITCOIN_FUNDING_DEPTHOK =>
// Channel is ready to use
context.become(ready)
case p: IncomingPayment =>
// Process incoming payment
handleIncomingPayment(p)
}
Getting Started
To get started with Eclair, follow these steps:
-
Clone the repository:
git clone https://github.com/ACINQ/eclair.git
-
Build the project:
cd eclair mvn package
-
Run Eclair:
./eclair-node/target/eclair-node-<version>-<commit_short_id>-bin/bin/eclair-node.sh
Make sure you have Java 11+ and Maven installed on your system before building and running Eclair.
Competitor Comparisons
Lightning Network Daemon ⚡️
Pros of lnd
- Larger community and more extensive documentation
- Better support for multiple cryptocurrencies beyond Bitcoin
- More robust and feature-rich API
Cons of lnd
- Higher resource requirements for running a node
- Steeper learning curve for new developers
- Less focus on privacy features compared to Eclair
Code Comparison
lnd
type LightningNode struct {
Identity *btcec.PublicKey
Addresses []net.Addr
Features *lnwire.FeatureVector
AuthSig *lnwire.Sig
LastUpdate time.Time
}
Eclair
case class NodeAnnouncement(
signature: ByteVector64,
features: Features,
timestamp: Long,
nodeId: PublicKey,
rgbColor: Color,
alias: String,
addresses: List[NodeAddress],
unknownFields: ByteVector = ByteVector.empty
)
Both implementations define structures for representing Lightning Network nodes, but lnd uses Go while Eclair uses Scala. lnd's approach is more compact, while Eclair's case class provides more detailed information about the node, including color and alias.
Core Lightning — Lightning Network implementation focusing on spec compliance and performance
Pros of lightning
- More extensive documentation and user guides
- Larger community and contributor base
- Supports multiple backend databases (SQLite, PostgreSQL)
Cons of lightning
- Steeper learning curve for beginners
- Requires more system resources
- Less focus on mobile and lightweight implementations
Code comparison
lightning
static struct command_result *json_fundchannel(struct command *cmd,
const char *buffer,
const jsmntok_t *obj UNNEEDED,
const jsmntok_t *params)
{
u8 *msg;
struct amount_sat amount;
struct node_id *destination;
eclair
override def receive: Receive = {
case init: Init =>
log.info(s"initializing actor $self")
context become main(init)
}
def main(init: Init): Receive = {
case cmd: Command => handleCommand(cmd, init)
The lightning implementation is written in C, focusing on low-level performance, while eclair uses Scala, offering a more functional and concise approach. Lightning's code structure suggests a more complex system with detailed parameter handling, whereas eclair's actor-based model provides a higher level of abstraction for handling commands and initialization.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
Eclair (French for Lightning) is a Scala implementation of the Lightning Network.
This software follows the Lightning Network Specifications (BOLTs). Other implementations include core lightning, lnd, electrum, and ldk.
- Lightning Network Specification Compliance
- JSON API
- Documentation
- Installation
- Configuration
- Docker
- Plugins
- Testnet usage
- Tools
- Resources
Lightning Network Specification Compliance
Please see the latest release note for detailed information on BOLT compliance.
JSON API
Eclair offers a feature-rich HTTP API that enables application developers to easily integrate.
For more information please visit the API documentation website.
:rotating_light: Eclair's JSON API should NOT be accessible from the outside world (similarly to Bitcoin Core API)
Documentation
Please visit our docs folder to find detailed instructions on how to configure your node, connect to other nodes, open channels, send and receive payments, and help with more advanced scenarios.
You will also find detailed guides and frequently asked questions there.
Installation
Prerequisite: Bitcoin Core
Eclair relies on Bitcoin Core to interface with and monitor the blockchain and to manage on-chain funds: Eclair does not include an on-chain wallet, channel opening transactions are funded by your Bitcoin Core node, and channel closing transactions return funds to your Bitcoin Core node.
This means that instead of re-implementing them, Eclair benefits from the verifications and optimisations (including fee management with RBF/CPFP, ...) that are implemented by Bitcoin Core. Eclair uses our own bitcoin library to verify data provided by Bitcoin Core.
:warning: This also means that Eclair has strong requirements on how your Bitcoin Core node is configured (see below), and that you must back up your Bitcoin Core wallet as well as your Eclair node (see here):
- Eclair needs a synchronized, segwit-ready, zeromq-enabled, wallet-enabled, non-pruning, tx-indexing Bitcoin Core node.
- You must configure your Bitcoin node to use
bech32
orbech32m
(segwit) addresses. If your wallet has "non-segwit UTXOs" (outputs that are neitherp2sh-segwit
,bech32
orbech32m
), you must send them to abech32
orbech32m
address before running Eclair. - Eclair requires Bitcoin Core 27.1 or higher. If you are upgrading an existing wallet, you may need to create a new address and send all your funds to that address.
Run bitcoind with the following minimal bitcoin.conf
:
server=1
rpcuser=foo
rpcpassword=bar
txindex=1
addresstype=bech32
changetype=bech32
zmqpubhashblock=tcp://127.0.0.1:29000
zmqpubrawtx=tcp://127.0.0.1:29000
Depending on the actual hardware configuration, it may be useful to provide increased dbcache
parameter value for faster verification and rpcworkqueue
parameter value for better handling of API requests on bitcoind
side.
# UTXO database cache size, in MiB
dbcache=2048
# Number of allowed pending RPC requests (default is 16)
rpcworkqueue=128
# How many seconds bitcoin will wait for a complete RPC HTTP request.
# after the HTTP connection is established.
rpcclienttimeout=30
Installing Eclair
Eclair is developed in Scala, a powerful functional language that runs on the JVM, and is packaged as a ZIP archive.
To run Eclair, you first need to install Java, we recommend that you use OpenJDK 11. Other runtimes also work, but we don't recommend using them.
Then download our latest release, unzip the archive and run the following command:
eclair-node-<version>-<commit_id>/bin/eclair-node.sh
You can then control your node via eclair-cli or the API.
:warning: Be careful when following tutorials/guides that may be outdated or incomplete. You must thoroughly read the official eclair documentation before running your own node.
Configuration
Configuration file
Eclair reads its configuration file, and write its logs, to ~/.eclair
by default.
To change your node's configuration, create a file named eclair.conf
in ~/.eclair
. Here's an example configuration file:
eclair.node-alias=eclair
eclair.node-color=49daaa
Here are some of the most common options:
name | description | default value |
---|---|---|
eclair.chain | Which blockchain to use: regtest, testnet, signet or mainnet | mainnet |
eclair.server.port | Lightning TCP port | 9735 |
eclair.api.enabled | Enable/disable the API | false. By default the API is disabled. If you want to enable it, you must set a password. |
eclair.api.port | API HTTP port | 8080 |
eclair.api.password | API password (BASIC) | "" (must be set if the API is enabled) |
eclair.bitcoind.rpcuser | Bitcoin Core RPC user | foo |
eclair.bitcoind.rpcpassword | Bitcoin Core RPC password | bar |
eclair.bitcoind.zmqblock | Bitcoin Core ZMQ block address | "tcp://127.0.0.1:29000" |
eclair.bitcoind.zmqtx | Bitcoin Core ZMQ tx address | "tcp://127.0.0.1:29000" |
eclair.bitcoind.wallet | Bitcoin Core wallet name | "" |
Quotes are not required unless the value contains special characters. Full syntax guide here.
→ see here for more configuration options.
Configure Bitcoin Core wallet
Eclair will use the default loaded Bitcoin Core wallet to fund any channels you choose to open.
If you want to use a different wallet from the default one, you must set eclair.bitcoind.wallet
accordingly in your eclair.conf
.
:warning: Once a wallet is configured, you must be very careful if you want to change it: changing the wallet when you have channels open may result in a loss of funds (or a complex recovery procedure).
Eclair will return BTC from closed channels to the wallet configured. Any BTC found in the wallet can be used to fund the channels you choose to open.
We also recommend tweaking the following parameters in bitcoin.conf
:
# This parameter ensures that your wallet will not create chains of unconfirmed
# transactions that would be rejected by other nodes.
walletrejectlongchains=1
# The following parameters set the maximum length of chains of unconfirmed
# transactions to 20 instead of the default value of 25.
limitancestorcount=20
limitdescendantcount=20
Setting these parameters lets you unblock long chains of unconfirmed channel funding transactions by using child-pays-for-parent (CPFP) to make them confirm.
With the default bitcoind
parameters, if your node created a chain of 25 unconfirmed funding transactions with a low-feerate, you wouldn't be able to use CPFP to raise their fees because your CPFP transaction would likely be rejected by
the rest of the network.
You can also configure Eclair to manage Bitcoin Core's private keys, see our guides for more details.
Java Environment Variables
Some advanced parameters can be changed with java environment variables. Most users won't need this and can skip this section.
However, if you're seeing Java heap size errors, you can try increasing the maximum memory allocated to the JVM with the -Xmx
parameter.
You can for example set it to use up to 512 MB (or any value that fits the amount of RAM on your machine) with:
export JAVA_OPTS=-Xmx512m
:warning: Using separate datadir
is mandatory if you want to run several instances of eclair on the same machine. You will also have to change ports in eclair.conf
(see above).
name | description | default value |
---|---|---|
eclair.datadir | Path to the data directory | ~/.eclair |
eclair.printToConsole | Log to stdout (in addition to eclair.log) |
For example, to specify a different data directory you would run the following command:
eclair-node-<version>-<commit_id>/bin/eclair-node.sh -Declair.datadir=/tmp/node1
Logging
Eclair uses logback
for logging. To use a different configuration, and override the internal logback.xml, run:
eclair-node-<version>-<commit_id>/bin/eclair-node.sh -Dlogback.configurationFile=/path/to/logback-custom.xml
Backup
You need to backup:
- your Bitcoin Core wallet
- your Eclair channels
For Bitcoin Core, you need to backup the wallet file for the wallet that Eclair is using. You only need to do this once, when the wallet is created. See Managing Wallets in the Bitcoin Core documentation for more information.
For Eclair, the files that you need to backup are located in your data directory. You must backup:
- your seeds (
node_seed.dat
andchannel_seed.dat
) - your channel database (
eclair.sqlite.bak
under directorymainnet
,testnet
,signet
orregtest
depending on which chain you're running on)
Your seeds never change once they have been created, but your channels will change whenever you receive or send payments. Eclair will
create and maintain a snapshot of its database, named eclair.sqlite.bak
, in your data directory, and update it when needed. This file is
always consistent and safe to use even when Eclair is running, and this is what you should back up regularly.
For example, you could configure a cron
task for your backup job. Or you could configure an optional notification script to be called by eclair once a new database snapshot has been created, using the following option:
eclair.file-backup.notify-script = "/absolute/path/to/script.sh"
Make sure your script is executable and uses an absolute path name for eclair.sqlite.bak
.
Note that depending on your filesystem, in your backup process we recommend first moving eclair.sqlite.bak
to some temporary file
before copying that file to your final backup location.
Docker
A Dockerfile x86_64 image is built on each commit on docker hub for running a dockerized eclair-node. For arm64 platforms you can use an arm64 Dockerfile to build your own arm64 container.
You can use the JAVA_OPTS
environment variable to set arguments to eclair-node
.
docker run -ti --rm -e "JAVA_OPTS=-Xmx512m -Declair.api.binding-ip=0.0.0.0 -Declair.node-alias=node-pm -Declair.printToConsole" acinq/eclair
If you want to persist the data directory, you can make the volume to your host with the -v
argument, as the following example:
docker run -ti --rm -v "/path_on_host:/data" -e "JAVA_OPTS=-Declair.printToConsole" acinq/eclair
If you enabled the API you can check the status of Eclair using the command line tool:
docker exec <container_name> eclair-cli -p foobar getinfo
Plugins
For advanced usage, Eclair supports plugins written in Scala, Java, or any JVM-compatible language.
A valid plugin is a jar that contains an implementation of the Plugin interface, and a manifest entry for Main-Class
with the FQDN of the implementation.
Here is how to run Eclair with plugins:
eclair-node-<version>/bin/eclair-node.sh <plugin1.jar> <plugin2.jar> <...>
You can find more details about plugins in the eclair-plugins repository.
Testnet usage
Eclair is configured to run on mainnet by default, but you can still run it on testnet (or regtest/signet): start your Bitcoin node in
testnet mode (add testnet=1
in bitcoin.conf
or start with -testnet
), and change Eclair's chain parameter and Bitcoin RPC port:
eclair.chain=testnet
eclair.bitcoind.rpcport=18332
For regtest, add regtest=1
in bitcoin.conf
or start with -regtest
, and modify eclair.conf
:
eclair.chain = "regtest"
eclair.bitcoind.rpcport=18443
For signet, add signet=1
in bitcoin.conf
or start with -signet
, and modify eclair.conf
:
eclair.chain = "signet"
eclair.bitcoind.rpcport=38332
You may also want to take advantage of the new configuration sections in bitcoin.conf
to manage parameters that are network specific,
so you can easily run your Bitcoin node on both mainnet and testnet. For example you could use:
server=1
txindex=1
addresstype=bech32
changetype=bech32
walletrejectlongchains=1
limitancestorcount=20
limitdescendantcount=20
[main]
rpcuser=<your-mainnet-rpc-user-here>
rpcpassword=<your-mainnet-rpc-password-here>
zmqpubhashblock=tcp://127.0.0.1:29000
zmqpubrawtx=tcp://127.0.0.1:29000
[test]
rpcuser=<your-testnet-rpc-user-here>
rpcpassword=<your-testnet-rpc-password-here>
zmqpubhashblock=tcp://127.0.0.1:29001
zmqpubrawtx=tcp://127.0.0.1:29001
Tools
- Demo Shop - an example testnet Lightning web shop.
- Network Explorer - a Lightning network visualization tool.
Resources
- [1] The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments by Joseph Poon and Thaddeus Dryja
- [2] Reaching The Ground With Lightning by Rusty Russell
- [3] Lightning Network Explorer - Explore testnet LN nodes you can connect to
Top Related Projects
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot