Convert Figma logo to code with AI

PaddlePaddle logoPaddleOCR

Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

45,888
7,955
45,888
108

Top Related Projects

20,611

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

63,942

Tesseract Open Source OCR Engine (main repository)

25,264

Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

Text recognition (optical character recognition) with deep learning methods, ICCV 2019

24,857

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Quick Overview

PaddleOCR is an open-source Optical Character Recognition (OCR) toolkit developed by Baidu's PaddlePaddle team. It provides a comprehensive set of tools for text detection, recognition, and layout analysis, supporting multiple languages and offering both lightweight and accurate models for various OCR tasks.

Pros

  • Comprehensive OCR solution with support for multiple languages and tasks
  • Offers both lightweight models for mobile devices and high-accuracy models for server-side applications
  • Active development and frequent updates from the PaddlePaddle team
  • Extensive documentation and examples for easy integration

Cons

  • Primarily based on the PaddlePaddle deep learning framework, which may have a steeper learning curve for those familiar with other frameworks
  • Some advanced features may require more computational resources
  • Documentation is sometimes not fully up-to-date with the latest features
  • Limited community support compared to some other popular OCR libraries

Code Examples

  1. Basic text detection and recognition:
from paddleocr import PaddleOCR

ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr('image.jpg')
for line in result:
    print(line)
  1. Extracting text from a specific region of an image:
import cv2
from paddleocr import PaddleOCR

image = cv2.imread('image.jpg')
roi = image[100:300, 200:400]  # Define region of interest
ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr(roi)
for line in result:
    print(line[1][0])  # Print recognized text
  1. Using a custom dictionary for text recognition:
from paddleocr import PaddleOCR

custom_dict = 'path/to/custom_dict.txt'
ocr = PaddleOCR(use_angle_cls=True, lang='en', rec_char_dict_path=custom_dict)
result = ocr.ocr('image.jpg')
for line in result:
    print(line)

Getting Started

To get started with PaddleOCR:

  1. Install PaddleOCR:
pip install paddleocr
  1. Use PaddleOCR in your Python script:
from paddleocr import PaddleOCR

# Initialize PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang='en')

# Perform OCR on an image
result = ocr.ocr('path/to/your/image.jpg')

# Print the results
for line in result:
    print(line)

For more advanced usage and customization options, refer to the official documentation on the PaddleOCR GitHub repository.

Competitor Comparisons

20,611

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Pros of UniLM

  • Broader scope: Supports a wide range of natural language processing tasks beyond OCR
  • More advanced language understanding: Utilizes large-scale pre-trained models for improved performance
  • Active research focus: Regularly updated with cutting-edge NLP techniques and models

Cons of UniLM

  • Less specialized for OCR: May not offer as many OCR-specific features and optimizations
  • Potentially more complex to use: Broader scope may require more setup and configuration for OCR tasks
  • Larger resource requirements: Pre-trained models can be computationally intensive

Code Comparison

PaddleOCR:

from paddleocr import PaddleOCR

ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr('image.jpg')

UniLM (using LayoutLM for OCR):

from transformers import LayoutLMForTokenClassification, LayoutLMTokenizer

model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased")
tokenizer = LayoutLMTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")

Note: The code snippets demonstrate basic setup and may not reflect the full complexity of using each library for OCR tasks.

63,942

Tesseract Open Source OCR Engine (main repository)

Pros of Tesseract

  • Mature and widely adopted OCR engine with a long history
  • Supports a wide range of languages and scripts
  • Highly customizable with extensive documentation

Cons of Tesseract

  • Generally slower performance compared to modern deep learning-based approaches
  • May struggle with complex layouts or low-quality images
  • Requires more manual configuration for optimal results

Code Comparison

Tesseract

import pytesseract
from PIL import Image

image = Image.open('image.png')
text = pytesseract.image_to_string(image)
print(text)

PaddleOCR

from paddleocr import PaddleOCR

ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr('image.png', cls=True)
for line in result:
    print(line[1][0])

PaddleOCR offers a more streamlined API for OCR tasks, with built-in support for text detection, recognition, and angle classification. Tesseract, while powerful, often requires additional preprocessing steps for optimal results. PaddleOCR's deep learning approach generally provides better performance on complex layouts and low-quality images, but Tesseract's extensive language support and customization options make it a versatile choice for specific use cases.

25,264

Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

Pros of EasyOCR

  • Simpler installation process and easier to use for beginners
  • Supports a wider range of languages (80+) out of the box
  • Better documentation and examples for quick start

Cons of EasyOCR

  • Generally slower inference speed compared to PaddleOCR
  • Less flexibility and customization options for advanced users
  • Smaller community and fewer pre-trained models available

Code Comparison

EasyOCR:

import easyocr
reader = easyocr.Reader(['en'])
result = reader.readtext('image.jpg')

PaddleOCR:

from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr('image.jpg')

Both libraries offer simple APIs for OCR tasks, but PaddleOCR provides more options for fine-tuning and optimization. EasyOCR's code is more straightforward, making it easier for beginners to get started quickly. PaddleOCR's approach allows for more advanced configurations, which can be beneficial for complex OCR tasks or when performance optimization is crucial.

Text recognition (optical character recognition) with deep learning methods, ICCV 2019

Pros of deep-text-recognition-benchmark

  • Focuses specifically on text recognition, providing a comprehensive benchmark for various models
  • Implements multiple state-of-the-art architectures, allowing for easy comparison and experimentation
  • Offers a modular design, making it easier to swap components and test different combinations

Cons of deep-text-recognition-benchmark

  • Limited to text recognition, while PaddleOCR offers a more comprehensive OCR pipeline
  • Less extensive documentation and fewer pre-trained models compared to PaddleOCR
  • Smaller community and fewer updates, potentially leading to slower development and support

Code Comparison

deep-text-recognition-benchmark:

model = Model(opt)
converter = AttnLabelConverter(opt.character)
criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)

PaddleOCR:

model = build_model(config['Architecture'])
loss_class = build_loss(config['Loss'])
optimizer = build_optimizer(config['Optimizer'], model)

Both repositories use similar approaches for model initialization and loss function definition. However, PaddleOCR's code structure is more modular and configurable, allowing for easier customization of the OCR pipeline.

24,857

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Pros of Mask_RCNN

  • Specialized in instance segmentation, offering precise object detection and segmentation
  • Well-documented with extensive tutorials and examples
  • Supports both TensorFlow 1.x and 2.x

Cons of Mask_RCNN

  • Limited to object detection and segmentation tasks
  • Less frequent updates and maintenance compared to PaddleOCR
  • Steeper learning curve for beginners

Code Comparison

Mask_RCNN:

import mrcnn.model as modellib
from mrcnn import utils

class InferenceConfig(coco.CocoConfig):
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

model = modellib.MaskRCNN(mode="inference", config=InferenceConfig(), model_dir=MODEL_DIR)

PaddleOCR:

from paddleocr import PaddleOCR

ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr('image.jpg', cls=True)

The code snippets highlight the difference in focus between the two repositories. Mask_RCNN requires more setup for object detection and segmentation, while PaddleOCR offers a simpler interface for OCR tasks.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

|

Chat

简介

PaddleOCR 旨在打造一套丰富、领先、且实用的 OCR 工具库,助力开发者训练出更好的模型,并应用落地。

🚀 社区

PaddleOCR 由 PMC 监督。Issues 和 PRs 将在尽力的基础上进行审查。

欲了解 PaddlePaddle 社区的完整概况,请访问 community。

⚠️注意:Issues模块仅用来报告程序🐞Bug,其余提问请移步Discussions模块提问。如所提Issue不是Bug,会被移到Discussions模块,敬请谅解。

📣 近期更新(more)

  • 🔥🔥2025.3.7 PaddleOCR 2.10 版本,主要包含如下内容:

    • 重磅新增 OCR 领域 12 个自研单模型:

      • 版面区域检测 系列 3 个模型:PP-DocLayout-L、PP-DocLayout-M、PP-DocLayout-S,支持预测 23 个常见版面类别,中英论文、研报、试卷、书籍、杂志、合同、报纸等丰富类型的文档实现高质量版面检测,mAP@0.5 最高达 90.4%,轻量模型端到端每秒处理超百页文档图像。
      • 公式识别 系列 2 个模型:PP-FormulaNet-L、PP-FormulaNet-S,支持 5 万种 LaTeX 常见词汇,支持识别高难度印刷公式和手写公式,其中 PP-FormulaNet-L 较开源同等量级模型精度高 6 个百分点,PP-FormulaNet-S 较同等精度模型速度快 16 倍。
      • 表格结构识别 系列 2 个模型:SLANeXt_wired、SLANeXt_wireless。飞桨自研新一代表格结构识别模型,分别支持有线表格和无线表格的结构预测。相比于SLANet_plus,SLANeXt在表格结构方面有较大提升,在内部高难度表格识别评测集上精度高 6 个百分点。
      • 表格分类 系列 1 个模型:PP-LCNet_x1_0_table_cls,超轻量级有线表格和无线表格的分类模型。
      • 表格单元格检测 系列 2 个模型:RT-DETR-L_wired_table_cell_det、RT-DETR-L_wireless_table_cell_det,分别支持有线表格和无线表格的单元格检测,可配合SLANeXt_wired、SLANeXt_wireless、文本检测、文本识别模块完成对表格的端到端预测。(参见本次新增的表格识别v2产线)
      • 文本识别 系列 1 个模型: PP-OCRv4_server_rec_doc,支持1.5万+字典,文字识别范围更广,与此同时提升了部分文字的识别精准度,在内部数据集上,精度较 PP-OCRv4_server_rec 高 3 个百分点以上。
      • 文本行方向分类 系列 1 个模型:PP-LCNet_x0_25_textline_ori,存储只有 0.3M 的超轻量级文本行方向分类模型。
    • 重磅推出 4 条高价值多模型组合方案:

      • **文档图像预处理产线**:通过超轻量级模型组合使用,实现对文档图像的扭曲和方向的矫正。
      • **版面解析v2产线**:组合多个自研的不同类型的 OCR 类模型,优化复杂版面阅读顺序,实现多种复杂 PDF 文件端到端转换 Markdown 文件和 JSON 文件。在多个文档场景下,转换效果较其他开源方案更好。可以为大模型训练和应用提供高质量的数据生产能力。
      • 表格识别v2产线:提供更好的表格端到端识别能力。 通过将表格分类模块、表格单元格检测模块、表格结构识别模块、文本检测模块、文本识别模块等组合使用,实现对多种样式的表格预测,用户可自定义微调其中任意模块以提升垂类表格的效果。
      • PP-ChatOCRv4-doc产线:在 PP-ChatOCRv3-doc 的基础上,融合了多模态大模型,优化了 Prompt 和多模型组合后处理逻辑,更好地解决了版面分析、生僻字、多页 pdf、表格、印章识别等常见的复杂文档信息抽取难点问题,准确率较 PP-ChatOCRv3-doc 高 15 个百分点。其中,大模型升级了本地部署的能力,提供了标准的 OpenAI 调用接口,支持对本地大模型如 DeepSeek-R1 部署的调用。
  • 🔥2024.10.1 添加OCR领域低代码全流程开发能力:

    • 飞桨低代码开发工具PaddleX,依托于PaddleOCR的先进技术,支持了OCR领域的低代码全流程开发能力:

      • 🎨 模型丰富一键调用:将文本图像智能分析、通用OCR、通用版面解析、通用表格识别、公式识别、印章文本识别涉及的17个模型整合为6条模型产线,通过极简的Python API一键调用,快速体验模型效果。此外,同一套API,也支持图像分类、目标检测、图像分割、时序预测等共计200+模型,形成20+单功能模块,方便开发者进行模型组合使用。
      • 🚀提高效率降低门槛:提供基于统一命令和图形界面两种方式,实现模型简洁高效的使用、组合与定制。支持高性能推理、服务化部署和端侧部署等多种部署方式。此外,对于各种主流硬件如英伟达GPU、昆仑芯、昇腾、寒武纪和海光等,进行模型开发时,都可以**无缝切换**。
    • 支持文档场景信息抽取v3PP-ChatOCRv3-doc、基于RT-DETR的高精度版面区域检测模型和PicoDet的高效率版面区域检测模型、高精度表格结构识别模型SLANet_Plus、文本图像矫正模型UVDoc、公式识别模型LatexOCR、基于PP-LCNet的文档图像方向分类模型

  • 🔥2024.7 添加 PaddleOCR 算法模型挑战赛冠军方案(2024 年比赛):

🌟 特性

支持多种 OCR 相关前沿算法,包括但不限于文本检测、文本识别、表格识别等。在此基础上打造产业级特色模型 PP-OCR、PP-Structure 和 PP-ChatOCR,并打通数据生产、模型训练、压缩、预测部署全流程,为开发者提供一站式解决方案。

⚡ 快速开始

🔥 低代码全流程开发

📝 文档

完整文档请移步:docs

📚《动手学 OCR》电子书

🎖 贡献者

⭐️ Star

Star History Chart

📄 许可证书

本项目的发布受 Apache License Version 2.0 许可认证, 欢迎大家使用和贡献。