Convert Figma logo to code with AI

aidlearning logoAidLearning-FrameWork

🔥🔥🔥AidLearning is a powerful AIOT development platform, AidLearning builds a linux env supporting GUI, deep learning and visual IDE on Android...Now Aid supports CPU+GPU+NPU for inference with high performance acceleration...Linux on Android or HarmonyOS

5,609
707
5,609
18

Top Related Projects

Termux - a terminal emulator application for Android OS extendible by variety of packages.

17,618

Open source UI framework written in Python, running on Windows, Linux, macOS, Android and iOS

PyTorch android examples of usage in applications

TensorFlow examples

Kotlin/Native infrastructure

Quick Overview

AidLearning-FrameWork is an AI development platform for mobile devices, particularly Android phones and tablets. It provides a complete Linux environment with pre-installed deep learning frameworks, allowing users to develop and run AI applications directly on their mobile devices without the need for cloud services or powerful desktop computers.

Pros

  • Enables AI development and deployment on mobile devices
  • Includes pre-installed popular deep learning frameworks (TensorFlow, PyTorch, Keras)
  • Provides a full Linux environment with GUI support
  • Offers easy installation and setup process

Cons

  • May have performance limitations compared to desktop or cloud-based AI development
  • Requires significant storage space on the mobile device
  • Limited to Android devices, not available for iOS
  • May drain battery faster due to intensive computations

Getting Started

  1. Download the AidLearning app from the Google Play Store or the project's GitHub releases page.
  2. Install the app on your Android device (Android 6.0 or higher required).
  3. Launch the app and follow the on-screen instructions to set up the Linux environment.
  4. Once setup is complete, you can access the Linux terminal, use pre-installed AI frameworks, and develop your AI applications.

Example commands to get started:

# Update the system
apt update && apt upgrade

# Launch Python and import TensorFlow
python3
>>> import tensorflow as tf
>>> print(tf.__version__)

# Clone a sample AI project
git clone https://github.com/aidlearning/AidLearning-FrameWork.git
cd AidLearning-FrameWork/examples

# Run a sample AI script
python3 mnist_example.py

Note: Specific code examples are not provided as this is not a traditional code library, but rather a development environment for running various AI frameworks and applications on mobile devices.

Competitor Comparisons

Termux - a terminal emulator application for Android OS extendible by variety of packages.

Pros of Termux

  • Lightweight and efficient, focusing on providing a Linux terminal environment
  • Extensive package repository with a wide range of tools and utilities
  • Active community and regular updates

Cons of Termux

  • Limited GUI support, primarily focused on command-line interface
  • Requires more technical knowledge to set up and use effectively
  • May not provide as comprehensive an AI development environment out-of-the-box

Code Comparison

Termux (package installation):

pkg install python
pip install numpy scipy matplotlib

AidLearning-FrameWork (AI-related code):

import torch
import torchvision
model = torchvision.models.resnet18(pretrained=True)

The code snippets highlight the different focus areas of the two projects. Termux emphasizes package management and system-level operations, while AidLearning-FrameWork provides pre-configured AI development tools and libraries.

AidLearning-FrameWork offers a more comprehensive AI development environment with pre-installed libraries and GUI support, making it easier for beginners to start with AI projects. However, Termux provides a more flexible and customizable Linux environment, allowing users to install and configure their preferred tools and libraries.

Both projects have their strengths, with Termux being more suitable for general-purpose Linux usage on Android, and AidLearning-FrameWork catering specifically to AI developers looking for a ready-to-use environment on mobile devices.

17,618

Open source UI framework written in Python, running on Windows, Linux, macOS, Android and iOS

Pros of Kivy

  • Cross-platform compatibility (desktop and mobile)
  • Large and active community with extensive documentation
  • Flexible and customizable UI design with Python

Cons of Kivy

  • Steeper learning curve for beginners
  • Limited native look and feel on some platforms
  • Performance can be slower compared to native solutions

Code Comparison

Kivy:

from kivy.app import App
from kivy.uix.button import Button

class MyApp(App):
    def build(self):
        return Button(text='Hello World')

MyApp().run()

AidLearning-FrameWork:

import cv2
import numpy as np
from cvs import *

def main():
    img = np.zeros((300, 300, 3), np.uint8)
    cv2.putText(img, "Hello World", (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
    imshow(img)

main()

The Kivy example demonstrates a simple GUI application with a button, while the AidLearning-FrameWork example shows image processing and display capabilities. Kivy focuses on cross-platform GUI development, whereas AidLearning-FrameWork is tailored for AI and computer vision tasks on mobile devices.

PyTorch android examples of usage in applications

Pros of android-demo-app

  • Focused specifically on Android development with PyTorch
  • Provides ready-to-use demo applications for common ML tasks
  • Easier integration for developers already familiar with Android ecosystem

Cons of android-demo-app

  • Limited to Android platform, less versatile than AidLearning-FrameWork
  • May require more setup and configuration for complex ML projects
  • Less comprehensive in terms of overall AI development environment

Code Comparison

AidLearning-FrameWork:

import cv2
import numpy as np
from cvs import *

def process_frame(frame):
    # AI processing logic here
    return processed_frame

cvs = CVS()
cvs.run(process_frame)

android-demo-app:

import org.pytorch.IValue;
import org.pytorch.Module;
import org.pytorch.Tensor;

Module module = Module.load(assetFilePath(this, "model.pt"));
Tensor inputTensor = Tensor.fromBlob(inputArray, inputShape);
Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor();

The AidLearning-FrameWork code snippet shows a more Python-centric approach with OpenCV integration, while the android-demo-app example demonstrates Java-based PyTorch model loading and inference on Android.

TensorFlow examples

Pros of TensorFlow Examples

  • Comprehensive collection of TensorFlow examples covering various ML tasks
  • Well-maintained and regularly updated by the TensorFlow team
  • Extensive documentation and explanations for each example

Cons of TensorFlow Examples

  • Focused solely on TensorFlow, lacking support for other AI frameworks
  • Requires separate setup and configuration of development environment
  • May be overwhelming for beginners due to the large number of examples

Code Comparison

AidLearning-FrameWork:

import cv2
import numpy as np
from cvs import *

def process_image(image):
    # Image processing code here
    return processed_image

show_img(process_image(read_img("input.jpg")))

TensorFlow Examples:

import tensorflow as tf
from tensorflow import keras

model = keras.Sequential([
    keras.layers.Dense(64, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy')

The AidLearning-FrameWork example focuses on image processing with OpenCV, while the TensorFlow Examples code demonstrates building a simple neural network model. AidLearning-FrameWork provides a more integrated environment for AI development on mobile devices, whereas TensorFlow Examples offers a wider range of machine learning examples across various domains.

Kotlin/Native infrastructure

Pros of kotlin-native

  • Allows Kotlin code to be compiled to native binaries without a VM
  • Supports cross-platform development for iOS, macOS, Android, Windows, Linux
  • Integrates well with existing Kotlin and Java codebases

Cons of kotlin-native

  • Steeper learning curve compared to AidLearning-FrameWork
  • More complex setup and configuration required
  • Limited support for some Kotlin features in native code

Code Comparison

kotlin-native example:

fun main() {
    println("Hello, Kotlin/Native!")
}

AidLearning-FrameWork example:

import cv2
img = cv2.imread("image.jpg")
cv2.imshow("Image", img)
cv2.waitKey(0)

The kotlin-native example shows a simple "Hello World" program, while the AidLearning-FrameWork example demonstrates basic image processing using OpenCV. This highlights the different focus areas of the two projects - kotlin-native for native compilation of Kotlin code, and AidLearning-FrameWork for AI and computer vision tasks on mobile devices.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

AidLux 1.3 正式发布!(观看视频⬆️📺)

AI,Android,Linux,ARM:基于Android+Linux融合生态的AI应用开发平台。 [English]

Build Status Coverage Status License Fork star commit

[AidLux](https://docs.aidlux.com) 是一个基于ARM构建,同时支持多生态融合(Android+Linux)环境的AI应用开发和部署平台,为开发者带来强大、简单、无限创意可能的奇妙体验! AidLux

AidLux融合架构,实现多生态超级叠加

AidLux融合架构

通过共享Android Linux kernel构建了完整的Linux系统环境,并且与Android系统环境同时提供用户访问。在为用户提供和原生Linux系统类似的命令行使用体验(如通过 apt 命令进行包管理)的同时,基于Web构建了图形化桌面环境,用户可以直接通过触摸屏或浏览器访问。

AidLux补全了AI运行所需的所有基础科学计算包/库,支持了业界主流深度学习框架,并内置自主研发的AI智能加速技术,为开发者提供了一个“AI 就绪”的应用开发平台。


Android+Linux 共生, 1+1>2

  • 一部设备同时运行两个系统环境,既是一部Android设备,同时也是一部Linux设备。两个生态的资源优势可同时被加以利用。

  • 跨系统无缝交互,高效,安全,稳定。Android应用与Linux应用实现本地高效直接访问,无需外部接口(如网络),充分释放硬件效能。 Android负责用户交互,Linux负责服务支持的新型应用形态等待你的奇思妙想。

  • 针对已有应用(Android或Linux),可轻松获得跨系统功能支持,使应用功能更加强大,充分保护已有开发投入。

  • 一键安装、自动部署、App式启动,过程快速、简单。


低AI开发门槛, 快速、简单、极致性能

  • 集成业界主流AI深度学习框架,无需配置,安装即用,极大的降低了AI开发和应用部署的环境配置复杂度,大幅减少了相关的时间投入。 框架支持如下:

    TensorFlowPyTorchCaffeMXNetKerasMindSporePandlePandleTNNMNNSNPE
    √√√√√√√√√√
  • 内置创新性的CPU+GPU+NPU智能加速技术,通过“硬件+框架+Op"多层优化,赋予深度学习运算性能的大幅度提升。并且提供统一API接口,在方便开发者调用的同时,还支持不同AI框架模型自动转换。以下测试为基于相同ARM设备,在Linux、AidLux上测试获得。单项测试进行20次取耗时(纵轴)平均值。

  • 在Wizard中进行拖拽式AI应用开发,AI组件快速赋能,1分钟生成你的第一个AI应用!

  • 内置丰富AI应用案例及对应代码,方便开发者能快速入门。


便携、开放、一站式

  • AidLux 云桌面系统,支持从PC, 平板, 手机等多种屏幕随时随地同时访问,实现你的超级移动开发平台。 快通过PC上的浏览器,输入云桌面地址,访问你手机上的AidLux桌面吧!

  • 海量外设轻松支持(网络、USB、串口、...),创意空间无限扩展。

  • 支持VSCode, Jupyter notebook 等多种开源开发工具及Python, C/C++, Java, JavaScript等开发语言。

  • 一站式开发、测试、部署全流程支持,AidLux关注效率,您关注创意! ApkBuild应用,可以快速将基于Python开发的项目打包成APK进行发布,方便用户在其它Android系统进行部署。


目前,AidLux已在各大App应用中心上线,下载启动次数200万+。

开始使用

点击以下链接即可下载最新的安装包 【AidLux v1.3.0】

贡献与参与

QQ交流群

License

致谢

AidLux参与人员:bill、flay、gondon、willam、gugu、yoline777、qidiso、yuge、muzi_ys等。

下列项目: