Top Related Projects
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
An Algorithmic Trading Library for Crypto-Assets in Python
Download market data from Yahoo! Finance's API
Extract data from a wide range of Internet sources into a pandas DataFrame.
Zipline, a Pythonic Algorithmic Trading Library
Quick Overview
Abu is an open-source quantitative trading system developed in Python. It provides a comprehensive set of tools for algorithmic trading, including data acquisition, strategy development, backtesting, and live trading capabilities. The project aims to offer a flexible and extensible platform for traders and researchers to develop and test trading strategies.
Pros
- Comprehensive trading ecosystem with support for multiple markets and asset types
- Extensive documentation and examples to help users get started
- Active development and community support
- Integration with popular data sources and brokers
Cons
- Steep learning curve for beginners in quantitative trading
- Limited support for non-Chinese markets and exchanges
- Requires significant computational resources for large-scale backtesting
- Some documentation and comments are in Chinese, which may be challenging for non-Chinese speakers
Code Examples
- Creating a simple moving average crossover strategy:
from abupy import AbuFactorBuyXd, AbuFactorSellXd, AbuFactorAtrNStop
from abupy import AbuPickTimeWorker
class MACrossStrategy(AbuFactorBuyXd):
def _init_self(self, **kwargs):
self.short_window = kwargs.pop('short_window', 5)
self.long_window = kwargs.pop('long_window', 20)
def fit_day(self, today):
if len(self.kl_pd) < self.long_window:
return None
short_ma = self.kl_pd['close'].rolling(window=self.short_window).mean()
long_ma = self.kl_pd['close'].rolling(window=self.long_window).mean()
if short_ma.iloc[-1] > long_ma.iloc[-1] and short_ma.iloc[-2] <= long_ma.iloc[-2]:
return self.buy_tomorrow()
return None
buy_factors = [MACrossStrategy(short_window=5, long_window=20)]
sell_factors = [AbuFactorSellXd()]
stop_loss_factors = [AbuFactorAtrNStop()]
worker = AbuPickTimeWorker(start='2018-01-01', end='2021-12-31', choice_symbols=['AAPL', 'GOOGL', 'MSFT'])
worker.run_pick_time_task(buy_factors, sell_factors, stop_loss_factors)
- Fetching and plotting stock data:
from abupy import ABuSymbolPd
import matplotlib.pyplot as plt
kl_pd = ABuSymbolPd.make_kl_df('AAPL', start='2020-01-01', end='2021-12-31')
kl_pd['close'].plot()
plt.title('AAPL Stock Price')
plt.show()
- Running a simple backtest:
from abupy import AbuCapital, AbuKLManager, AbuBenchmark, AbuPickTimeWorker
capital = AbuCapital(1000000, benchmark='AAPL')
kl_pd_manager = AbuKLManager(start='2018-01-01', end='2021-12-31')
benchmark = AbuBenchmark()
worker = AbuPickTimeWorker(capital, benchmark, kl_pd_manager, choice_symbols=['AAPL', 'GOOGL', 'MSFT'])
worker.fit(buy_factors, sell_factors)
worker.capital.plot_returns()
Getting Started
-
Install Abu:
pip install abupy
-
Import required modules:
from abupy import AbuFactorBuyXd, AbuFactorSellXd, AbuPickTimeWorker
-
Define your strategy and run a backtest:
# Define your buy and sell factors buy_factors = [AbuFactorBuyXd(...)] sell_factors = [AbuFactorSellXd(...)] # Create a worker and run the backtest worker = AbuPickTimeWorker
Competitor Comparisons
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
Pros of Lean
- More comprehensive documentation and extensive wiki
- Larger community and active development with frequent updates
- Supports multiple programming languages (C#, Python, F#)
Cons of Lean
- Steeper learning curve for beginners
- Requires more setup and configuration
- Less focus on Chinese markets compared to Abu
Code Comparison
Abu (Python):
from abupy import AbuFactorBuyBreak, AbuFactorSellBreak, AbuFactorAtrNStop
from abupy import AbuPickTimeWorker
buy_factors = [{'xd': 60, 'class': AbuFactorBuyBreak},
{'xd': 42, 'class': AbuFactorBuyBreak}]
sell_factors = [{'xd': 120, 'class': AbuFactorSellBreak},
{'stop_loss_n': 1.0, 'stop_win_n': 3.0,
'class': AbuFactorAtrNStop}]
worker = AbuPickTimeWorker(start='2013-07-10', end='2018-07-10',
buy_factors=buy_factors,
sell_factors=sell_factors)
Lean (C#):
public class MyAlgorithm : QCAlgorithm
{
public override void Initialize()
{
SetStartDate(2013, 7, 10);
SetEndDate(2018, 7, 10);
SetCash(100000);
AddEquity("SPY", Resolution.Daily);
}
public override void OnData(Slice data)
{
if (!Portfolio.Invested)
{
SetHoldings("SPY", 1);
}
}
}
Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Pros of qlib
- More comprehensive and feature-rich quantitative investment platform
- Backed by Microsoft, potentially offering better long-term support and development
- Extensive documentation and examples for various investment strategies
Cons of qlib
- Steeper learning curve due to its complexity and extensive features
- May be overkill for simpler trading strategies or individual investors
- Requires more computational resources for advanced features
Code comparison
qlib example:
from qlib.contrib.model.gbdt import LGBModel
from qlib.contrib.data.handler import Alpha158
from qlib.workflow import R
model = LGBModel()
dataset = Alpha158()
R.run(model=model, dataset=dataset)
abu example:
from abupy import AbuFactorBuyBreak, AbuFactorSellNDay, AbuFactorAtrNStop
from abupy import AbuPickTimeWorker
buy_factors = [{'factor_class': AbuFactorBuyBreak, 'xd': 60, 'buy_count': 100}]
sell_factors = [
{'factor_class': AbuFactorSellNDay, 'sell_n': 5},
{'factor_class': AbuFactorAtrNStop, 'stop_loss_n': 1.0, 'stop_win_n': 3.0}
]
AbuPickTimeWorker.do_symbols_with_factors(buy_factors, sell_factors)
An Algorithmic Trading Library for Crypto-Assets in Python
Pros of Catalyst
- Focuses on privacy-preserving smart contracts for the Secret Network
- Provides tools for building and testing Secret Contracts
- Offers a more specialized ecosystem for privacy-centric blockchain development
Cons of Catalyst
- Limited to Secret Network development, less versatile than Abu
- Smaller community and ecosystem compared to Abu's broader quantitative trading focus
- Steeper learning curve for developers not familiar with Secret Network
Code Comparison
Abu (Python):
from abupy import AbuFactorBuyBreak, AbuFactorSellBreak, AbuFactorAtrNStop
buy_factors = [{'class': AbuFactorBuyBreak, 'xd': 60, 'buy_count': 100}]
sell_factors = [
{'class': AbuFactorSellBreak, 'xd': 120},
{'class': AbuFactorAtrNStop, 'stop_loss_n': 1.0, 'stop_win_n': 3.0}
]
Catalyst (Rust):
use cosmwasm_std::{
to_binary, Binary, Deps, DepsMut, Env, MessageInfo, Response, StdResult,
};
use crate::msg::{ExecuteMsg, InstantiateMsg, QueryMsg};
pub fn instantiate(
deps: DepsMut,
_env: Env,
info: MessageInfo,
msg: InstantiateMsg,
) -> StdResult<Response> {
// Contract initialization logic
}
Download market data from Yahoo! Finance's API
Pros of yfinance
- Simpler and more focused API for fetching Yahoo Finance data
- Lightweight with minimal dependencies
- Actively maintained with frequent updates
Cons of yfinance
- Limited to Yahoo Finance data only
- Lacks advanced trading and backtesting capabilities
- Less comprehensive documentation compared to abu
Code Comparison
yfinance:
import yfinance as yf
ticker = yf.Ticker("AAPL")
hist = ticker.history(period="1mo")
print(hist)
abu:
from abupy import ABuSymbolPd
symbol = 'AAPL'
start = '2020-01-01'
end = '2020-12-31'
df = ABuSymbolPd.make_kl_df(symbol, start=start, end=end)
print(df)
Summary
yfinance is a straightforward library for fetching Yahoo Finance data, while abu is a more comprehensive quantitative trading framework. yfinance is easier to use for simple data retrieval tasks, but abu offers more advanced features for trading strategy development and backtesting. The choice between them depends on the specific requirements of your project and the depth of analysis needed.
Extract data from a wide range of Internet sources into a pandas DataFrame.
Pros of pandas-datareader
- Widely used and well-maintained by the PyData community
- Integrates seamlessly with pandas for data manipulation
- Supports a broad range of data sources, including financial APIs
Cons of pandas-datareader
- Limited to data retrieval, lacks advanced analysis features
- May require additional libraries for complex financial modeling
- Less focused on algorithmic trading compared to abu
Code Comparison
pandas-datareader:
import pandas_datareader as pdr
data = pdr.get_data_yahoo('AAPL', start='2020-01-01', end='2021-01-01')
print(data.head())
abu:
from abupy import ABuSymbolPd
data = ABuSymbolPd.make_kl_df('AAPL', start='2020-01-01', end='2021-01-01')
print(data.head())
Both libraries provide methods to fetch stock data, but abu offers more specialized functions for quantitative trading and analysis beyond basic data retrieval.
Zipline, a Pythonic Algorithmic Trading Library
Pros of Zipline
- More established and widely used in the quantitative finance community
- Extensive documentation and educational resources available
- Supports a broader range of asset classes and data sources
Cons of Zipline
- Steeper learning curve for beginners
- Less focus on AI/ML integration compared to Abu
- Development has slowed down in recent years
Code Comparison
Zipline example:
from zipline.api import order, record, symbol
def initialize(context):
context.asset = symbol('AAPL')
def handle_data(context, data):
order(context.asset, 10)
record(AAPL=data.current(context.asset, 'price'))
Abu example:
from abupy import AbuFactorBuyBreak, AbuFactorSellBreak, AbuFactorAtrNStop
from abupy import AbuPickTimeWorker
buy_factors = [AbuFactorBuyBreak()]
sell_factors = [AbuFactorSellBreak(), AbuFactorAtrNStop()]
worker = AbuPickTimeWorker(start='2018-03-01', end='2019-03-01', choice_symbols=['US.AAPL'])
worker.run()
Both libraries provide frameworks for backtesting trading strategies, but Abu focuses more on AI-driven approaches and ease of use for beginners, while Zipline offers a more traditional and flexible algorithmic trading platform.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
ç´¢å¼
å 容 | ä½ç½® |
---|---|
é¿å¸éåç³»ç»æºä»£ç | abupyç®å½ |
é¿å¸éå使ç¨æç¨ | abupy_lectureç®å½ |
é¿å¸éåéç¼ç¨çé¢æä½ | abupy_uiç®å½ |
ãéå交æä¹è·¯ã示ä¾ä»£ç | ipythonï¼pythonç®å½ |
ãæºå¨å¦ä¹ ä¹è·¯ã示ä¾ä»£ç | https://github.com/maxmon/abu_ml |
ð è§å¨è®¿é®ç½å: https://www.abuquant.com
-
ðºð¸ éç¼æ¯å¨æ¥ç¤ºä¾éååæ:
-
ðºð¸ éç¼æ¯æ¥æ¥ç¤ºä¾éååæ:
- ð¨ð³ 沪深å¸åºéå示ä¾åæå表:
- ðºð¸ ç¾è¡å¸åºéå示ä¾åæå表:
- ð© 港è¡å¸åºéå示ä¾åæå表:
ç¹ç¹
- 使ç¨å¤ç§æºå¨å¦ä¹ ææ¯æºè½ä¼åçç¥
- å¨å®çä¸æ导çç¥è¿è¡äº¤æï¼æé«çç¥çå®çææï¼æèå¸åº
æ¯æçæèµå¸åº:
- ç¾è¡ï¼Aè¡ï¼æ¸¯è¡
- æè´§ï¼ææ
- æ¯ç¹å¸ï¼è±ç¹å¸
å·¥ç¨è®¾è®¡ç®æ ï¼
-
å离åºç¡çç¥åçç¥ä¼åçç£æ¨¡å
-
æé«çµæ´»åº¦åéé æ§
-
éåç³»ç»
é¿å¸éå综åAI大æ°æ®ç³»ç», K线形æç³»ç», ç¼ è®ºï¼æ³¢æµªç论ï¼è°æ³¢ç论ï¼çªç ´ï¼æ´çå½¢æåæï¼å¤´è©å½¢æï¼ä¸å¤´ï¼ä¸è§ï¼æå½¢ï¼æ¥å½¢ï¼ç©å½¢ï¼ï¼ ç»å ¸ææ ç³»ç», èµ°å¿è¶å¿åæç³»ç», æ¶é´åºå维度系ç», ç»è®¡æ¦çç³»ç», ä¼ ç»å线系ç»å¯¹æèµåç§è¿è¡æ·±åº¦éååæ, å½»åºè·¨è¶ç¨æ·å¤æç代ç éåé¶æ®µ, æ´éåæ®é人群使ç¨, è¿åéå2.0æ¶ä»£.
- éå模å
ä¸è¿°ç³»ç»ä¸ç»åä¸ç¾ç§åéå模å, å¦: éèæ¶é´åºåæè模å, 深度形æè´¨éè¯ä¼°æ¨¡å, å¤ç©ºå½¢æç»åè¯å®æ¨¡å, å¤å¤´å½¢ææ¢æçç¥æ¨¡å, 空头形æåè¡¥çç¥æ¨¡å, 大æ°æ®K线形æåå²ç»åæå模å, 交ææä»å¿æ模å, å¤å·´èºéå模å, æ¯æ§æ®åé»åæ¯æ模å, å¤ç©ºäºæ¢æ¥å¤æ¦ç模å, 强弱对æ模å, è¶å¿è§åº¦ååç模å, èå¨åæ模å, æ¶é´åºåçè¿æ¿ååºæ¨¡å, è¿éæ¥å¤ååºæ¨¡å, è¶å¿å¯å¨é度模å, é 对对å²æ¨¡åç.
- AIéå
é¿å¸éåé对AI人工æºè½ä»åºå±å¼åç®æ³, æ建éåéåä½ç³»ç人工æºè½AIç³»ç», è®ç»äºæ°ä¸ªä»ä¸åè§åº¦è¯å«éåç¹å¾çè¯å模åï¼æ´ä½ä¸å为ä¸ä¸ªç³»å«ï¼ç©ç模åç»ãå¤å·´èºçç©æ¨¡åç»ãéåå½¢æ模åç»ãä¸åç³»å«æ¨¡å群ä»ä¸åè§åº¦(主è¦ç©ç交æå®ä½åæã人群å¿çãå¾è¡¨çä¸ä¸ªæ¹å)è¯ä¼°èµ°å¿ï¼ç³»å«ç模å群æ¯ç±è¥å¹²ä¸ªç¬æçè¯å«ç®æ³ååæ°éä¼ æ·æ±°ï¼ç»ææ群ï¼å ææ票è¯å.
- éåçç¥
é¿å¸éåç»åäºä¼ ç»åºäºä»£ç ççéåç³»ç», 对æªæ¥æ©æ¶ä¿¡å·ååºæ¶æºçé¢å¤, ç³»ç»åºäºæ°ç¾ç§ç®åç§å交æçç¥ï¼è¡çåºæ´å¤çéå交æçç¥æ°çç¥å¨è¿äºç§ååºç¡ä¸ä¸æèªæå¦ä¹ ãèªææé¿ï¼ä¸æåè£ï¼éè çåï¼æ·æ±°éæ©æºå¶ä¸ç¹è¡ï¼ç®ååºç¨çéåä¹°å ¥ååºä¿¡å·çç¥å ±è®¡18496ç§ã
- éååºç¨
é¿å¸éåç»åå¤ç§éååææ°æ®æ建äºæ°ç¾ç§éååºç¨, å¦: AIé«è½é¢è¦, AIé«å æ¶å», æºè½é¢æµæ¶¨è·å¹ , ä¸è·äºæµªéå, ä¸æ¶¨äºæµªéå, ç¼ è®ºï¼æ³¢æµªç论ï¼è°æ³¢ç论ï¼çªç ´ï¼æ´çå½¢æåæï¼å¤´è©å½¢æï¼ä¸å¤´ï¼ä¸è§ï¼æå½¢ï¼æ¥å½¢ï¼ç©å½¢ï¼ï¼ é»åæ¯æ强度åæ, ä¸åä¸è§å½¢çªç ´, ä¸éä¸è§å½¢, ä¸éåº (头è©åº), ä¸é顶 (头è©é¡¶), å弧顶, å弧åº, ä¹äºç顶形æ, ä¸åä¸é¨æ²å½¢æ, 好ååæ»å½¢æ, åéæ¢åºå½¢æ, å°å»ä¹æå½¢æ, å¤æ¹ç®å½¢æ, ä¸æ¶¨éå线, åä¸çªç ´ç®±ä½, 跳空çªç ´ç¼ºå£, é»éåå²çº¿éå, è¶å¿è·è¸ªä¿¡å·, åå¼åå¤ä¿¡å·, æ¢æé£é©æ§å¶éå, æ¢çå©æ¶¦ä¿æ¤éå, 综åææ åæç.
å®è£
é¨ç½²
æ¨è使ç¨Anacondaé¨ç½²Pythonç¯å¢ï¼è¯¦è§ éåç¯å¢é¨ç½²
æµè¯
import abupy
使ç¨ææ¡£
1ï¼æ©æ¶çç¥çå¼å
第ä¸èçé¢æä½æç¨è§é¢ææ¾å°å
æ©æ¶çç¥å³å®ä»ä¹æ¶åä¹°å ¥æèµåï¼åæµåè¯æ们è¿ç§çç¥å¨åå²æ°æ®ä¸ç模ææ¶çå¦ä½ã
- ä¹°å ¥æ©æ¶å åçç¼å
- å解模å¼ä¸æ¥ä¸æ¥å¯¹çç¥è¿è¡åæµ
- ååºæ©æ¶å åçå®ç°
å¨å¯¹çæ¶é´ï¼éè§å¯¹ç人(è¡ç¥¨)ï¼æ¯ä¸ç§å¹¸ç¦
å¨å¯¹çæ¶é´ï¼éè§éç人(è¡ç¥¨)ï¼æ¯ä¸ç§æ²ä¼¤
å¨éçæ¶é´ï¼éè§å¯¹ç人(è¡ç¥¨)ï¼æ¯ä¸å£°å¹æ¯
å¨éçæ¶é´ï¼éè§éç人(è¡ç¥¨)ï¼æ¯ä¸ç§æ å¥
2: æ©æ¶çç¥çä¼å
éè¿æ¢çæ¢æä¿æ¤çç¥äº§ççå©æ¶¦ï¼æ§å¶é£é©ã
- åºæ¬æ¢çæ¢æçç¥
- é£é©æ§å¶æ¢æçç¥
- å©æ¶¦ä¿æ¤æ¢ççç¥
3: æ»ç¹çç¥ä¸äº¤ææç»è´¹
èèåºç¨äº¤æçç¥æ¶äº§ççæäº¤ä»·æ ¼åå·®åæç»è´¹ã
- æ»ç¹ä¹°å ¥ååºä»·æ ¼ç¡®å®åçç¥å®ç°
- 交ææç»è´¹ç计ç®ä»¥åèªå®ä¹æç»è´¹
type | date | symbol | commission |
---|---|---|---|
buy | 20150423 | usTSLA | 8.22 |
buy | 20150428 | usTSLA | 7.53 |
sell | 20150622 | usTSLA | 8.22 |
buy | 20150624 | usTSLA | 7.53 |
sell | 20150706 | usTSLA | 7.53 |
sell | 20150708 | usTSLA | 7.53 |
buy | 20151230 | usTSLA | 7.22 |
sell | 20160105 | usTSLA | 7.22 |
buy | 20160315 | usTSLA | 5.57 |
sell | 20160429 | usTSLA | 5.57 |
4: å¤æ¯è¡ç¥¨æ©æ¶åæµä¸ä»ä½ç®¡ç
é对å¤æ¯è¡ç¥¨å®ç°æ©æ¶çç¥ï¼éè¿ä»ä½ç®¡ççç¥æ§å¶é£é©ã
- å¤æ¯è¡ç¥¨ä½¿ç¨ç¸åçå åè¿è¡æ©æ¶
- èªå®ä¹ä»ä½ç®¡ççç¥çå®ç°
- å¤æ¯è¡ç¥¨ä½¿ç¨ä¸åçå åè¿è¡æ©æ¶
- 使ç¨å¹¶è¡æ¥æåæ©æ¶è¿è¡æç
5: éè¡çç¥çå¼å
ä¸ä¸ªå¥½ççç¥éè¦ä¸ä¸ªå¥½çæ çã
- éè¡å åçç¼å
- å¤ä¸ªéè¡å å并è¡æ§è¡
- 使ç¨å¹¶è¡æ¥æåéè¡è¿è¡æç
6: åæµç»æç度é
æ£ç¡®ç度éå¼é¢çæ£ç¡®çåè¿æ¹åã
- 度éçåºæ¬ä½¿ç¨æ¹æ³
- 度éçå¯è§å
- æ©å±èªå®ä¹åº¦éç±»
7: 寻æ¾çç¥æä¼åæ°åè¯å
éè¿å®å¶çè¯åæºå¶ï¼å¯»æ¾ä¸ä¸ªçç¥æåççåæ°ï¼æ¯å¦ï¼åºè¯¥èèå¤å°å¤©çå线ï¼
- åæ°åå¼èå´
- Grid Search寻æ¾æä¼åæ°
- 度éç»æçè¯å
- ä¸åæéçè¯å
- èªå®ä¹è¯åç±»çå®ç°
8: Aè¡å¸åºçåæµ
- Aè¡å¸åºçåæµç¤ºä¾
- 涨è·åçç¹æ®å¤ç
- 对å¤ç»äº¤æç»æè¿è¡åæ
9: 港è¡å¸åºçåæµ
- 港è¡å¸åºçåæµç¤ºä¾
- ä¼åçç¥ï¼æé«ç³»ç»ç稳å®æ§
- å°ä¼åçç¥ç'çç¥'åä¸ºç±»è£ é¥°å¨è¿è¡å°è£
10: æ¯ç¹å¸, è±ç¹å¸çåæµ
- æ¯ç¹å¸, è±ç¹å¸çèµ°å¿æ°æ®åæ
- æ¯ç¹å¸, è±ç¹å¸çèµ°å¿å¯è§ååæ
- æ¯ç¹å¸ï¼è±ç¹å¸å¸åºçåæµ
11: æè´§å¸åºçåæµ
- æè´§å¸åºçç¹ç¹
- ç涨å约çåæµ
- çè·å约çåæµ
- ä½ç§»è·¯ç¨æ¯ä¼åçç¥
12: æºå¨å¦ä¹ ä¸æ¯ç¹å¸ç¤ºä¾
å¦ä½å¨æèµåçéå交æä¸æ£ç¡®ä½¿ç¨æºå¨å¦ä¹ ææ¯ï¼
- æ¯ç¹å¸ç¹å¾çæå
- abuä¸å ç½®æºå¨å¦ä¹ 模åç使ç¨
- æµè¯éçéªè¯ä¸éåè¡¡ææ¯
- 继æ¿AbuMLPd对æ°æ®å¤çè¿è¡å°è£
13: éåææ¯åæåºç¨
ææ¯åæä¸å¤§å设ï¼å¸åºè¡ä¸ºæ¶µçä¸åï¼ä»·æ ¼æ²¿è¶å¿ç§»å¨ï¼åå²ä¼éæ¼ã
- é»å线ï¼æ¯æ线èªå¨ç»å¶
- 跳空ææ¯åæ
- ä¼ ç»ææ¯ææ ææ¯åæ
14: éåç¸å ³æ§åæåºç¨
ç¸ä¼¼çæèµåæ°æ®çèåï¼å¾å¾æ¯ç¸ä¼¼è¡ä¸ºæ¨¡å¼çæèµäººç¾¤ã
- ç¸å ³ç¸ä¼¼åº¦ç度é
- è·ç¦»ç度éä¸ç¸ä¼¼åº¦
- ç¸ä¼¼ç¸å ³æ¥å£çåºç¨
- èªç¶ç¸å ³æ§
15: éå交æåæç´¢å¼æ
æç´¢çç¥çæç失败交æï¼ç±è£å¤æ¦æªä½å²å¨ç交æè ã
- ååè®ç»é交æçåæµ
- 对交æè¿è¡äººå·¥åæ
- 主è£ç³»ç»åç
- è§åº¦ä¸»è£
- èµäºå®è§ä¸åçç解é
- æä¼åç±»ç°çé
19: æ°æ®æº
abuæ¯æè¡ç¥¨ãæè´§ãæ°åè´§å¸çå¤ç§éèæèµåçè¡æ å交æï¼å¹¶å ·æé«åº¦å¯å®å¶æ§ã
- æ°æ®æ¨¡å¼çåæ¢
- æ°æ®åå¨çåæ¢
- æ°æ®æºçåæ¢
- å ¨å¸åºæ°æ®çæ´æ°
- æ¥å ¥å¤é¨æ°æ®æºï¼è¡ç¥¨æ°æ®æº
- æ¥å ¥å¤é¨æ°æ®æºï¼æè´§æ°æ®æº
- æ¥å ¥å¤é¨æ°æ®æºï¼æ¯ç¹å¸ï¼è±ç¹å¸æ°æ®æº
å ³æ³¨é¿å¸éåå¾®ä¿¡å ¬ä¼å·: abu_quant
License
Top Related Projects
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
An Algorithmic Trading Library for Crypto-Assets in Python
Download market data from Yahoo! Finance's API
Extract data from a wide range of Internet sources into a pandas DataFrame.
Zipline, a Pythonic Algorithmic Trading Library
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot