Top Related Projects
Free and Open Source, Distributed, RESTful Search Engine
ZincSearch . A lightweight alternative to elasticsearch that requires minimal resources, written in Go.
Open Source alternative to Algolia + Pinecone and an Easier-to-Use alternative to ElasticSearch ⚡ 🔍 ✨ Fast, typo tolerant, in-memory fuzzy Search Engine for building delightful search experiences
A full-text search engine in rust
Quick Overview
Bleve is a modern text indexing library for Go. It provides full-text search capabilities with support for various languages, custom analyzers, and faceted search. Bleve is designed to be easy to use while offering powerful features for advanced search applications.
Pros
- Easy to integrate with Go applications
- Supports multiple languages and custom analyzers
- Provides faceted search and highlighting capabilities
- Offers flexible query types and scoring options
Cons
- Performance may be slower compared to some other search engines
- Limited documentation for advanced features
- Requires more memory compared to simpler search solutions
- May have a steeper learning curve for complex use cases
Code Examples
- Creating an index and indexing a document:
import (
"github.com/blevesearch/bleve/v2"
)
// Create a new index
index, _ := bleve.New("example.bleve", bleve.NewIndexMapping())
// Index a document
doc := struct {
ID string
Name string
Body string
}{
ID: "doc1",
Name: "First document",
Body: "This is the content of the first document.",
}
index.Index("doc1", doc)
- Performing a search:
// Search for documents
query := bleve.NewMatchQuery("content")
searchRequest := bleve.NewSearchRequest(query)
searchResults, _ := index.Search(searchRequest)
// Print results
for _, hit := range searchResults.Hits {
fmt.Printf("ID: %s, Score: %f\n", hit.ID, hit.Score)
}
- Using faceted search:
// Add a facet field to the index mapping
indexMapping := bleve.NewIndexMapping()
englishTextFieldMapping := bleve.NewTextFieldMapping()
englishTextFieldMapping.Analyzer = "en"
indexMapping.DefaultMapping.AddFieldMappingsAt("category", englishTextFieldMapping)
// Create a search request with facets
searchRequest := bleve.NewSearchRequest(bleve.NewMatchAllQuery())
searchRequest.AddFacet("categories", bleve.NewFacetRequest("category", 5))
// Perform the search
searchResults, _ := index.Search(searchRequest)
// Print facet results
for _, facet := range searchResults.Facets["categories"].Terms {
fmt.Printf("Category: %s, Count: %d\n", facet.Term, facet.Count)
}
Getting Started
To start using Bleve in your Go project:
-
Install Bleve:
go get -u github.com/blevesearch/bleve/v2
-
Import Bleve in your Go code:
import "github.com/blevesearch/bleve/v2"
-
Create an index and start indexing documents:
index, _ := bleve.New("example.bleve", bleve.NewIndexMapping()) index.Index("docID", yourDocument)
-
Perform searches:
query := bleve.NewMatchQuery("search terms") searchRequest := bleve.NewSearchRequest(query) searchResults, _ := index.Search(searchRequest)
Competitor Comparisons
Free and Open Source, Distributed, RESTful Search Engine
Pros of Elasticsearch
- More mature and feature-rich, with advanced functionalities like machine learning and anomaly detection
- Highly scalable and distributed, suitable for large-scale enterprise deployments
- Extensive ecosystem with various plugins and integrations
Cons of Elasticsearch
- Higher resource requirements and complexity, potentially overkill for smaller projects
- Steeper learning curve and more challenging to set up and maintain
- Licensed under Elastic License 2.0, which may have limitations for some use cases
Code Comparison
Elasticsearch (Java):
IndexResponse response = client.index(new IndexRequest("posts")
.id("1")
.source(jsonBuilder()
.startObject()
.field("title", "Elasticsearch Basics")
.field("content", "Learn about Elasticsearch...")
.endObject()
)
);
Bleve (Go):
index, _ := bleve.New("example.bleve", bleve.NewIndexMapping())
doc := struct {
Title string
Content string
}{Title: "Bleve Basics", Content: "Learn about Bleve..."}
index.Index("1", doc)
Both Elasticsearch and Bleve are powerful search engines, but they cater to different scales and use cases. Elasticsearch is more suitable for large-scale, distributed environments with complex requirements, while Bleve offers a simpler, lightweight solution for Go applications with embedded search needs.
ZincSearch . A lightweight alternative to elasticsearch that requires minimal resources, written in Go.
Pros of ZincSearch
- Built-in web UI for easy management and visualization
- Designed for high performance and scalability out of the box
- Supports multiple indices and sharding
Cons of ZincSearch
- Less mature and battle-tested compared to Bleve
- Smaller community and ecosystem
- More opinionated and less flexible for custom use cases
Code Comparison
ZincSearch (Go):
index, _ := zincsearch.NewIndex("myindex")
doc := map[string]interface{}{
"id": "1",
"name": "John Doe",
}
index.Index(doc["id"].(string), doc)
Bleve (Go):
mapping := bleve.NewIndexMapping()
index, _ := bleve.New("myindex", mapping)
doc := struct {
ID string
Name string
}{ID: "1", Name: "John Doe"}
index.Index(doc.ID, doc)
Both ZincSearch and Bleve are full-text search engines written in Go. ZincSearch focuses on providing a complete, ready-to-use search solution with built-in features like a web UI and high scalability. Bleve, on the other hand, offers more flexibility and customization options, making it suitable for integration into various applications and use cases. ZincSearch may be easier to set up and use for simple search needs, while Bleve provides more control over the indexing and search process for advanced requirements.
Open Source alternative to Algolia + Pinecone and an Easier-to-Use alternative to ElasticSearch ⚡ 🔍 ✨ Fast, typo tolerant, in-memory fuzzy Search Engine for building delightful search experiences
Pros of Typesense
- Faster indexing and search performance, especially for large datasets
- Built-in typo tolerance and fuzzy search capabilities
- Simpler setup and configuration process
Cons of Typesense
- Less flexible schema design compared to Bleve
- Smaller community and ecosystem of plugins/extensions
- Limited language support for indexing (primarily focused on English)
Code Comparison
Typesense (search query):
searchParameters := &api.SearchParameters{
Q: "search query",
QueryBy: "title,description",
FilterBy: "category:=books",
SortBy: "popularity:desc",
}
Bleve (search query):
query := bleve.NewMatchQuery("search query")
searchRequest := bleve.NewSearchRequest(query)
searchRequest.Fields = []string{"title", "description"}
searchRequest.SortBy([]string{"-popularity"})
Both Typesense and Bleve offer powerful search capabilities, but Typesense focuses on simplicity and out-of-the-box performance, while Bleve provides more flexibility and customization options. Typesense is better suited for projects requiring quick setup and fast performance, whereas Bleve is ideal for applications needing fine-grained control over indexing and searching processes.
A full-text search engine in rust
Pros of Toshi
- Written in Rust, potentially offering better performance and memory safety
- Designed as a distributed search engine, suitable for larger-scale applications
- Supports real-time indexing and querying
Cons of Toshi
- Less mature and less widely adopted compared to Bleve
- Smaller community and fewer resources available
- May have a steeper learning curve for developers not familiar with Rust
Code Comparison
Toshi (Rust):
let index = Index::create("my_index", IndexOptions::default())?;
index.add_document(doc!{
"id" => 1,
"title" => "Example Document",
"content" => "This is a sample document for indexing."
})?;
Bleve (Go):
index, _ := bleve.New("example.bleve", bleve.NewIndexMapping())
doc := struct {
ID string
Title string
Content string
}{ID: "1", Title: "Example Document", Content: "This is a sample document for indexing."}
index.Index("1", doc)
Both examples demonstrate creating an index and adding a document, but Toshi uses Rust's syntax and error handling, while Bleve uses Go's approach.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
bleve
A modern indexing + search library in GO
Features
- Index any GO data structure or JSON
- Intelligent defaults backed up by powerful configuration (scorch)
- Supported field types:
text
,number
,datetime
,boolean
,geopoint
,geoshape
,IP
,vector
- Supported query types:
term
,phrase
,match
,match_phrase
,prefix
,regexp
,wildcard
,fuzzy
- term range, numeric range, date range, boolean field
- compound queries:
conjuncts
,disjuncts
, boolean (must
/should
/must_not
) - query string syntax
- geo spatial search
- approximate k-nearest neighbors via vector search
- tf-idf scoring
- Hybrid search: exact + semantic
- Query time boosting
- Search result match highlighting with document fragments
- Aggregations/faceting support:
- terms facet
- numeric range facet
- date range facet
Indexing
message := struct{
Id string
From string
Body string
}{
Id: "example",
From: "marty.schoch@gmail.com",
Body: "bleve indexing is easy",
}
mapping := bleve.NewIndexMapping()
index, err := bleve.New("example.bleve", mapping)
if err != nil {
panic(err)
}
index.Index(message.Id, message)
Querying
index, _ := bleve.Open("example.bleve")
query := bleve.NewQueryStringQuery("bleve")
searchRequest := bleve.NewSearchRequest(query)
searchResult, _ := index.Search(searchRequest)
Command Line Interface
To install the CLI for the latest release of bleve, run:
$ go install github.com/blevesearch/bleve/v2/cmd/bleve@latest
$ bleve --help
Bleve is a command-line tool to interact with a bleve index.
Usage:
bleve [command]
Available Commands:
bulk bulk loads from newline delimited JSON files
check checks the contents of the index
count counts the number documents in the index
create creates a new index
dictionary prints the term dictionary for the specified field in the index
dump dumps the contents of the index
fields lists the fields in this index
help Help about any command
index adds the files to the index
mapping prints the mapping used for this index
query queries the index
registry registry lists the bleve components compiled into this executable
scorch command-line tool to interact with a scorch index
Flags:
-h, --help help for bleve
Use "bleve [command] --help" for more information about a command.
Text Analysis
Bleve includes general-purpose analyzers (customizable) as well as pre-built text analyzers for the following languages:
Arabic (ar), Bulgarian (bg), Catalan (ca), Chinese-Japanese-Korean (cjk), Kurdish (ckb), Danish (da), German (de), Greek (el), English (en), Spanish - Castilian (es), Basque (eu), Persian (fa), Finnish (fi), French (fr), Gaelic (ga), Spanish - Galician (gl), Hindi (hi), Croatian (hr), Hungarian (hu), Armenian (hy), Indonesian (id, in), Italian (it), Dutch (nl), Norwegian (no), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Swedish (sv), Turkish (tr)
Text Analysis Wizard
Discussion/Issues
Discuss usage/development of bleve and/or report issues here:
License
Apache License Version 2.0
Top Related Projects
Free and Open Source, Distributed, RESTful Search Engine
ZincSearch . A lightweight alternative to elasticsearch that requires minimal resources, written in Go.
Open Source alternative to Algolia + Pinecone and an Easier-to-Use alternative to ElasticSearch ⚡ 🔍 ✨ Fast, typo tolerant, in-memory fuzzy Search Engine for building delightful search experiences
A full-text search engine in rust
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot