Top Related Projects
Image processing in Python
Open Source Computer Vision Library
Python Imaging Library (Fork)
matplotlib: plotting with Python
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
scikit-learn: machine learning in Python
Quick Overview
Colour is a comprehensive colour science package for Python. It provides a wide range of algorithms and datasets for colour science, including colour appearance models, colour difference equations, colour space conversions, and more. The library aims to be a one-stop solution for colour-related computations in various fields such as computer graphics, image processing, and colorimetry.
Pros
- Extensive collection of colour science algorithms and datasets
- Well-documented with detailed API references and examples
- Actively maintained with regular updates and improvements
- Supports a wide range of colour spaces and models
Cons
- Steep learning curve for beginners due to the complexity of colour science
- Large package size due to comprehensive functionality
- Some advanced features may require additional dependencies
- Performance may be slower compared to specialized libraries for specific tasks
Code Examples
Example 1: Converting RGB to XYZ colour space
import colour
RGB = [0.45620519, 0.03081071, 0.04091952]
XYZ = colour.sRGB_to_XYZ(RGB)
print(XYZ)
Example 2: Calculating colour difference using CIEDE2000
import colour
Lab_1 = [100.00000000, 21.57210357, 272.22819350]
Lab_2 = [100.00000000, 426.67945353, 72.39590835]
delta_E = colour.delta_E(Lab_1, Lab_2, method='CIEDE2000')
print(delta_E)
Example 3: Applying a colour appearance model (CAM16)
import colour
XYZ = [19.01, 20.00, 21.78]
XYZ_w = [95.05, 100.00, 108.88]
L_A = 318.31
Y_b = 20.0
surround = colour.VIEWING_CONDITIONS_CAM16['Average']
specification = colour.CAM16(XYZ, XYZ_w, L_A, Y_b, surround)
print(specification)
Getting Started
To get started with Colour, follow these steps:
-
Install the library using pip:
pip install colour-science
-
Import the library in your Python script:
import colour
-
Start using Colour's functions. For example, to convert RGB to XYZ:
RGB = [0.45620519, 0.03081071, 0.04091952] XYZ = colour.sRGB_to_XYZ(RGB) print(XYZ)
For more detailed information and examples, refer to the official documentation at https://colour.readthedocs.io/.
Competitor Comparisons
Image processing in Python
Pros of scikit-image
- Broader scope, covering general image processing tasks
- Larger community and more frequent updates
- Extensive documentation and tutorials
Cons of scikit-image
- Less specialized for color science applications
- May require additional libraries for advanced color operations
- Steeper learning curve for color-specific tasks
Code Comparison
scikit-image:
from skimage import color
rgb_image = ... # Your RGB image
lab_image = color.rgb2lab(rgb_image)
colour-science:
import colour
rgb_image = ... # Your RGB image
lab_image = colour.RGB_to_Lab(rgb_image)
Summary
scikit-image is a comprehensive image processing library with a wide range of functionalities, while colour-science focuses specifically on color science applications. scikit-image offers more general-purpose tools and has a larger community, but colour-science provides more specialized color-related functions and may be easier to use for specific color science tasks. The choice between the two depends on the project's requirements and the user's familiarity with color science concepts.
Open Source Computer Vision Library
Pros of OpenCV
- Extensive functionality for computer vision and image processing
- Large community and widespread adoption in industry and academia
- Optimized performance with hardware acceleration support
Cons of OpenCV
- Steeper learning curve due to its broad scope and complexity
- Larger codebase and dependencies, potentially increasing project size
Code Comparison
OpenCV:
import cv2
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200)
Colour:
import colour
RGB = colour.read_image('image.jpg')
XYZ = colour.RGB_to_XYZ(RGB)
Lab = colour.XYZ_to_Lab(XYZ)
OpenCV focuses on general image processing and computer vision tasks, while Colour specializes in color science and colorimetry. OpenCV offers a wider range of functionalities but may be more complex for specific color-related tasks. Colour provides a more focused and intuitive approach to color science applications but has a narrower scope compared to OpenCV's broad capabilities.
Python Imaging Library (Fork)
Pros of Pillow
- Broader image processing capabilities, including resizing, filtering, and drawing
- Extensive file format support for reading and writing various image types
- Larger community and more frequent updates
Cons of Pillow
- Limited color science functionality compared to Colour
- Less focus on color space transformations and colorimetry
- Not specifically designed for scientific color computations
Code Comparison
Pillow example (image resizing):
from PIL import Image
img = Image.open("input.jpg")
resized_img = img.resize((300, 200))
resized_img.save("output.jpg")
Colour example (color space conversion):
import colour
RGB = [0.18, 0.18, 0.18]
XYZ = colour.sRGB_to_XYZ(RGB)
Lab = colour.XYZ_to_Lab(XYZ)
Pillow is more suitable for general image processing tasks, while Colour specializes in color science operations. Pillow offers a wide range of image manipulation functions, whereas Colour provides advanced color space transformations and colorimetry calculations. Choose Pillow for everyday image handling and Colour for precise color-related computations in scientific or professional applications.
matplotlib: plotting with Python
Pros of matplotlib
- Widely adopted and extensively documented plotting library
- Supports a vast array of plot types and customization options
- Integrates seamlessly with NumPy and other scientific Python libraries
Cons of matplotlib
- Steeper learning curve for complex visualizations
- Can be slower for large datasets compared to specialized libraries
- Default styles may require more tweaking for publication-ready plots
Code Comparison
matplotlib:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
plt.plot(x, np.sin(x))
plt.show()
colour:
import colour
import numpy as np
RGB = np.array([0.45620519, 0.03081071, 0.04091952])
XYZ = colour.sRGB_to_XYZ(RGB)
print(XYZ)
matplotlib focuses on creating various types of plots and visualizations, while colour specializes in color science computations and transformations. matplotlib is more suitable for general-purpose plotting, whereas colour is tailored for specific color-related tasks and calculations.
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
Pros of labelme
- User-friendly graphical interface for image annotation
- Supports multiple annotation types (polygons, rectangles, points)
- Easy export of annotations in various formats (JSON, COCO, YOLO)
Cons of labelme
- Limited to image annotation tasks, less versatile than Colour
- Smaller community and fewer contributors compared to Colour
- Less extensive documentation and examples
Code Comparison
labelme:
from labelme import utils
img = utils.img_data_to_arr(img_data)
label_name_to_value = {'_background_': 0, 'person': 1}
lbl = utils.shapes_to_label(img.shape, shapes, label_name_to_value)
Colour:
import colour
RGB = colour.read_image('image.png')
XYZ = colour.RGB_to_XYZ(RGB)
Lab = colour.XYZ_to_Lab(XYZ)
Summary
While labelme focuses on image annotation with a graphical interface, Colour is a comprehensive color science library. labelme is more suitable for specific annotation tasks, while Colour offers a wide range of color-related functionalities. The choice between the two depends on the specific requirements of your project.
scikit-learn: machine learning in Python
Pros of scikit-learn
- Broader scope: Covers a wide range of machine learning algorithms and tools
- Larger community: More contributors, frequent updates, and extensive documentation
- Integration: Seamlessly works with other popular data science libraries like NumPy and pandas
Cons of scikit-learn
- Steeper learning curve: Due to its extensive feature set
- Less specialized: Not focused on color science specifically
- Heavier package: Larger installation size and potentially slower import times
Code Comparison
scikit-learn (simple linear regression):
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
predictions = model.predict(X_test)
colour (color conversion):
import colour
RGB = [0.45620519, 0.03081071, 0.04091952]
XYZ = colour.sRGB_to_XYZ(RGB)
Both libraries offer powerful functionality in their respective domains. scikit-learn provides a comprehensive suite of machine learning tools, while colour focuses specifically on color science computations. The choice between them depends on the specific needs of your project.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
.. begin-trim-long-description
.. raw:: html
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/colour-science/colour-branding/master/images/Colour_Logo_Dark_001.svg">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/colour-science/colour-branding/master/images/Colour_Logo_001.svg">
<img style="background:rgb(0, 0, 0, 0) !important;" src="https://raw.githubusercontent.com/colour-science/colour-branding/master/images/Colour_Logo_001.svg">
</picture>
.. end-trim-long-description
|
.. start-badges
|NumFOCUS| |actions| |coveralls| |codacy| |version| |zenodo|
.. |NumFOCUS| image:: https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat-square&colorA=E1523D&colorB=007D8A :target: http://numfocus.org :alt: Powered by NumFOCUS .. |actions| image:: https://img.shields.io/github/actions/workflow/status/colour-science/colour/.github/workflows/continuous-integration-quality-unit-tests.yml?branch=develop&style=flat-square :target: https://github.com/colour-science/colour/actions :alt: Develop Build Status .. |coveralls| image:: http://img.shields.io/coveralls/colour-science/colour/develop.svg?style=flat-square :target: https://coveralls.io/r/colour-science/colour :alt: Coverage Status .. |codacy| image:: https://img.shields.io/codacy/grade/1f3b8d3bba7440ba9ebc1170589628b1/develop.svg?style=flat-square :target: https://app.codacy.com/gh/colour-science/colour :alt: Code Grade .. |version| image:: https://img.shields.io/pypi/v/colour-science.svg?style=flat-square :target: https://pypi.org/project/colour-science :alt: Package Version .. |zenodo| image:: https://img.shields.io/badge/DOI-10.5281/zenodo.13917514-blue.svg?style=flat-square :target: https://dx.doi.org/10.5281/zenodo.13917514 :alt: DOI
.. end-badges
Colour <https://github.com/colour-science/colour>
__ is an open-source
Python <https://www.python.org>
__ package providing a comprehensive number
of algorithms and datasets for colour science.
It is freely available under the
BSD-3-Clause <https://opensource.org/licenses/BSD-3-Clause>
__ terms.
Colour is an affiliated project of NumFOCUS <https://numfocus.org>
__, a
501(c)(3) nonprofit in the United States.
.. contents:: Table of Contents :backlinks: none :depth: 2
.. sectnum::
Draft Release Notes
The draft release notes of the
develop <https://github.com/colour-science/colour/tree/develop>
__
branch are available at this
url <https://gist.github.com/KelSolaar/4a6ebe9ec3d389f0934b154fec8df51d>
__.
Sponsors
We are grateful ð for the support of our
sponsors <https://github.com/colour-science/colour/blob/develop/SPONSORS.rst>
.
If you'd like to join them, please consider
becoming a sponsor on OpenCollective <https://opencollective.com/colour-science>
.
.. begin-trim-long-description
.. raw:: html
<h2 align="center">Gold Sponsors</h2>
.. raw:: html
<table>
<tbody>
<tr>
<td align="center" valign="middle">
<a href="https://makeup.land/" target="_blank">
<img width="288px"" src="https://images.opencollective.com/makeup-land/28c2133/logo/512.png">
</a>
<p><a href="https://makeup.land/" target="_blank">makeup.land</a></p>
</td>
<td align="center" valign="middle">
<a href="https://twitter.com/JRGoldstone" target="_blank">
<img width="288px" src="https://pbs.twimg.com/profile_images/1310212058672103425/3tPPvC6m.jpg">
</a>
<p><a href="https://twitter.com/JRGoldstone" target="_blank">Joseph Goldstone</a></p>
</td>
<td align="center" valign="middle">
<a href="https://colorhythm.com" target="_blank">
<img width="288px" src="https://www.colour-science.org/images/Colorhythm_Logo.png">
</a>
<p><a href="https://colorhythm.com" target="_blank">Colorhythm</a></p>
</td>
</tr>
</tbody>
</table>
.. raw:: html
<h2 align="center">Silver Sponsors</h2>
.. raw:: html
<table>
<tbody>
<tr>
<td align="center" valign="middle">
<a href="http://antlerpost.com/" target="_blank">
<img width="176px" src="https://pbs.twimg.com/profile_images/1394284009329504257/CZxrhA6x.jpg">
</a>
<p><a href="http://antlerpost.com/" target="_blank">Nick Shaw</a></p>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="176px" src="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="176px" src="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="176px" src="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="176px" src="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
</tr>
</tbody>
</table>
.. raw:: html
<h2 align="center">Bronze Sponsors</h2>
.. raw:: html
<table>
<tbody>
<tr>
<td align="center" valign="middle">
<a href="https://github.com/scoopxyz" target="_blank">
<img width="126px" src="https://avatars0.githubusercontent.com/u/22137450">
</a>
<p><a href="https://github.com/scoopxyz" target="_blank">Sean Cooper</a></p>
</td>
<td align="center" valign="middle">
<a href="https://caveacademy.com" target="_blank">
<img width="126px" src="https://pbs.twimg.com/profile_images/1264204657548812290/y3kmV4NM.jpg">
</a>
<p><a href="https://caveacademy.com" target="_blank">CAVE Academy</a></p>
</td>
<td align="center" valign="middle">
<a href="https://www.zhannaalekseeva.nyc" target="_blank">
<img width="126px" src="https://images.opencollective.com/studio-zhanna-alekseeva-nyc/a60e20f/avatar/256.png">
</a>
<p><a href="https://www.zhannaalekseeva.nyc" target="_blank">Studio Zhanna Alekseeva.NYC</a></p>
</td>
<td align="center" valign="middle">
<a href="https://opencollective.com/guest-b971dc73" target="_blank">
<img width="126px" src="https://opencollective.com/static/images/default-guest-logo.svg">
</a>
<p><a href="https://opencollective.com/guest-b971dc73" target="_blank">James Howard</a></p>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/126x126/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="126px" src="https://dummyimage.com/126x126/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/126x126/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="126px" src="https://dummyimage.com/126x126/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/126x126/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="126px" src="https://dummyimage.com/126x126/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
</tr>
</tbody>
</table>
.. raw:: html
<h2 align="center">Donations & Special Sponsors</h2>
.. raw:: html
<table>
<tbody>
<tr>
<td align="center" valign="middle">
<a href="https://www.jetbrains.com/" target="_blank">
<img height="176px" src="https://i.imgur.com/nN1VDUG.png">
</a>
<p><a href="https://www.jetbrains.com/" target="_blank">JetBrains</a></p>
</td>
<td align="center" valign="middle">
<a href="https://github.com/sobotka" target="_blank">
<img width="176px" src="https://avatars2.githubusercontent.com/u/59577">
</a>
<p><a href="https://github.com/sobotka" target="_blank">Troy James Sobotka</a></p>
</td>
<td align="center" valign="middle">
<a href="https://github.com/remia" target="_blank">
<img width="176px" src="https://avatars3.githubusercontent.com/u/1922806">
</a>
<p><a href="https://github.com/remia" target="_blank">Remi Achard</a></p>
</td>
<td align="center" valign="middle">
<a href="http://virtualmatter.org/" target="_blank">
<img width="176px" src="https://ca.slack-edge.com/T02KH93GH-UCFD09UUT-g2f156f5e08e-512">
</a>
<p><a href="http://virtualmatter.org/" target="_blank">Kevin Whitfield</a></p>
</td>
<td align="center" valign="middle">
<a href="https://www.richardlackey.com/" target="_blank">
<img width="176px" src="https://pbs.twimg.com/profile_images/1384145243096829962/CoUQPhrP.jpg">
</a>
<p><a href="https://www.richardlackey.com/" target="_blank">Richard Lackey</a></p>
</td>
</tr>
<tr>
<td align="center" valign="middle">
<a href="https://www.artstation.com/monsieur_lixm" target="_blank">
<img width="176px" src="https://pbs.twimg.com/profile_images/1469781977280786433/NncWAxCW.jpg">
</a>
<p><a href="https://www.artstation.com/monsieur_lixm" target="_blank">Liam Collod</a></p>
</td>
<td align="center" valign="middle">
<a href="https://twitter.com/alexmitchellmus" target="_blank">
<img width="176px" src="https://pbs.twimg.com/profile_images/763631280722370560/F9FN4lEz.jpg">
</a>
<p><a href="https://twitter.com/alexmitchellmus" target="_blank">Alex Mitchell</a></p>
</td>
<td align="center" valign="middle">
<a href="https://twitter.com/ilia_sibiryakov" target="_blank">
<img width="176px" src="https://avatars.githubusercontent.com/u/23642861">
</a>
<p><a href="https://twitter.com/ilia_sibiryakov" target="_blank">Ilia Sibiryakov</a></p>
</td>
<td align="center" valign="middle">
<a href="https://github.com/zachlewis" target="_blank">
<img width="176px" src="https://avatars0.githubusercontent.com/u/2228592">
</a>
<p><a href="https://github.com/zachlewis" target="_blank">Zack Lewis</a></p>
</td>
<td align="center" valign="middle">
<a href="https://twitter.com/fredsavoir" target="_blank">
<img width="176px" src="https://pbs.twimg.com/profile_images/363988638/FS_Portrait082009.jpg">
</a>
<p><a href="https://twitter.com/fredsavoir" target="_blank">Frederic Savoir</a></p>
</td>
</tr>
<tr>
<td align="center" valign="middle">
<a href="https://twitter.com/digitaltechltd" target="_blank">
<img width="176px" src="https://images.squarespace-cdn.com/content/v1/5ef3250008605a61d88e7240/1593263686377-LPNJQMBE7U00WRNBY6JH/DIT+Logo+-+Dark+theme+-+PNG.png">
</a>
<p><a href="https://www.digitalimagingtech.co.uk" target="_blank">Howard Colin</a></p>
</td>
<td align="center" valign="middle">
<a href="https://chrisbrejon.com/" target="_blank">
<img width="176px" src="https://i.imgur.com/Zhs53S9.png">
</a>
<p><a href="https://chrisbrejon.com/" target="_blank">Christophe Brejon</a></p>
</td>
<td align="center" valign="middle">
<a href="https://twitter.com/MarioRokicki" target="_blank">
<img width="176px" src="https://pbs.twimg.com/profile_images/1801891382/mario_pi_sq_400x400.jpg">
</a>
<p><a href="https://twitter.com/MarioRokicki" target="_blank">Mario Rokicki</a></p>
</td>
<td align="center" valign="middle">
<a href="https://opencollective.com/joshua-pines" target="_blank">
<img width="176px" src="https://images.opencollective.com/joshua-pines/ad0ec4b/avatar/256.png">
</a>
<p><a href="https://opencollective.com/joshua-pines" target="_blank">Joshua Pines</a></p>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="176px" src="https://dummyimage.com/176x176/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
</tr>
</tbody>
</table>
.. end-trim-long-description
Features
Most of the objects are available from the colour
namespace:
.. code-block:: python
import colour
Automatic Colour Conversion Graph - colour.graph
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Colour_Automatic_Conversion_Graph.png
.. code-block:: python
sd = colour.SDS_COLOURCHECKERS["ColorChecker N Ohta"]["dark skin"]
colour.convert(sd, "Spectral Distribution", "sRGB", verbose={"mode": "Short"})
.. code-block:: text
===============================================================================
* *
* [ Conversion Path ] *
* *
* "sd_to_XYZ" --> "XYZ_to_sRGB" *
* *
===============================================================================
array([ 0.49034776, 0.30185875, 0.23587685])
.. code-block:: python
illuminant = colour.SDS_ILLUMINANTS["FL2"]
colour.convert(
sd,
"Spectral Distribution",
"sRGB",
sd_to_XYZ={"illuminant": illuminant},
)
.. code-block:: text
array([ 0.47924575, 0.31676968, 0.17362725])
Chromatic Adaptation - ``colour.adaptation``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
XYZ = [0.20654008, 0.12197225, 0.05136952]
D65 = colour.CCS_ILLUMINANTS["CIE 1931 2 Degree Standard Observer"]["D65"]
A = colour.CCS_ILLUMINANTS["CIE 1931 2 Degree Standard Observer"]["A"]
colour.chromatic_adaptation(XYZ, colour.xy_to_XYZ(D65), colour.xy_to_XYZ(A))
.. code-block:: text
array([ 0.25331034, 0.13765286, 0.01543185])
.. code-block:: python
sorted(colour.CHROMATIC_ADAPTATION_METHODS)
.. code-block:: text
['CIE 1994', 'CMCCAT2000', 'Fairchild 1990', 'Von Kries', 'Zhai 2018', 'vK20']
Algebra - ``colour.algebra``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kernel Interpolation
********************
.. code-block:: python
y = [5.9200, 9.3700, 10.8135, 4.5100, 69.5900, 27.8007, 86.0500]
x = range(len(y))
colour.KernelInterpolator(x, y)([0.25, 0.75, 5.50])
.. code-block:: text
array([ 6.18062083, 8.08238488, 57.85783403])
Sprague (1880) Interpolation
****************************
.. code-block:: python
y = [5.9200, 9.3700, 10.8135, 4.5100, 69.5900, 27.8007, 86.0500]
x = range(len(y))
colour.SpragueInterpolator(x, y)([0.25, 0.75, 5.50])
.. code-block:: text
array([ 6.72951612, 7.81406251, 43.77379185])
Colour Appearance Models - ``colour.appearance``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
XYZ_w = [95.05, 100.00, 108.88]
L_A = 318.31
Y_b = 20.0
colour.XYZ_to_CIECAM02(XYZ, XYZ_w, L_A, Y_b)
.. code-block:: text
CAM_Specification_CIECAM02(J=34.434525727858997, C=67.365010921125915, h=22.279164147957076, s=62.814855853327131, Q=177.47124941102123, M=70.024939419291385, H=2.689608534423904, HC=None)
.. code-block:: python
colour.XYZ_to_CIECAM16(XYZ, XYZ_w, L_A, Y_b)
.. code-block:: text
CAM_Specification_CIECAM16(J=33.880368498111686, C=69.444353357408033, h=19.510887327451748, s=64.03612114840314, Q=176.03752758512178, M=72.18638534116765, H=399.52975599115319, HC=None)
.. code-block:: python
colour.XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b)
.. code-block:: text
CAM_Specification_CAM16(J=33.880368498111686, C=69.444353357408033, h=19.510887327451748, s=64.03612114840314, Q=176.03752758512178, M=72.18638534116765, H=399.52975599115319, HC=None)
.. code-block:: python
colour.XYZ_to_Hellwig2022(XYZ, XYZ_w, L_A, Y_b)
.. code-block:: text
CAM_Specification_Hellwig2022(J=33.880368498111686, C=37.579419116276348, h=19.510887327451748, s=109.33343382561695, Q=45.34489577734751, M=49.577131618021212, H=399.52975599115319, HC=None, J_HK=39.41741758094139, Q_HK=52.755585941150315)
.. code-block:: python
colour.XYZ_to_Kim2009(XYZ, XYZ_w, L_A)
.. code-block:: text
CAM_Specification_Kim2009(J=19.879918542450937, C=55.83905525087696, h=22.013388165090031, s=112.9797935493912, Q=36.309026130161513, M=46.346415858227871, H=2.3543198369639753, HC=None)
.. code-block:: python
colour.XYZ_to_ZCAM(XYZ, XYZ_w, L_A, Y_b)
.. code-block:: text
CAM_Specification_ZCAM(J=38.347186278956357, C=21.121389892085183, h=33.711578931095183, s=81.444585609489536, Q=76.986725284523772, M=42.403805833900513, H=0.45779200212217158, HC=None, V=43.623590687423551, K=43.20894953152817, W=34.829588380192149)
Colour Blindness - ``colour.blindness``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
import numpy as np
cmfs = colour.colorimetry.MSDS_CMFS_LMS["Stockman & Sharpe 2 Degree Cone Fundamentals"]
colour.msds_cmfs_anomalous_trichromacy_Machado2009(cmfs, np.array([15, 0, 0]))[450]
.. code-block:: text
array([ 0.08912884, 0.0870524 , 0.955393 ])
.. code-block:: python
primaries = colour.MSDS_DISPLAY_PRIMARIES["Apple Studio Display"]
d_LMS = (15, 0, 0)
colour.matrix_anomalous_trichromacy_Machado2009(cmfs, primaries, d_LMS)
.. code-block:: text
array([[-0.27774652, 2.65150084, -1.37375432],
[ 0.27189369, 0.20047862, 0.52762768],
[ 0.00644047, 0.25921579, 0.73434374]])
Colour Correction - ``colour characterisation``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
import numpy as np
RGB = [0.17224810, 0.09170660, 0.06416938]
M_T = np.random.random((24, 3))
M_R = M_T + (np.random.random((24, 3)) - 0.5) * 0.5
colour.colour_correction(RGB, M_T, M_R)
.. code-block:: text
array([ 0.18147565, 0.08609354, 0.08569274])
.. code-block:: python
sorted(colour.COLOUR_CORRECTION_METHODS)
.. code-block:: text
['Cheung 2004', 'Finlayson 2015', 'Vandermonde']
ACES Input Transform - ``colour characterisation``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
sensitivities = colour.MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"]
illuminant = colour.SDS_ILLUMINANTS["D55"]
colour.matrix_idt(sensitivities, illuminant)
.. code-block:: text
(array([[ 0.59368175, 0.30418371, 0.10213454],
[ 0.00457979, 1.14946003, -0.15403982],
[ 0.03552213, -0.16312291, 1.12760077]]), array([ 1.58214188, 1. , 1.28910346]))
Colorimetry - ``colour.colorimetry``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Spectral Computations
*********************
.. code-block:: python
colour.sd_to_XYZ(colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"])
.. code-block:: text
array([ 36.94726204, 32.62076174, 13.0143849 ])
.. code-block:: python
sorted(colour.SPECTRAL_TO_XYZ_METHODS)
.. code-block:: text
['ASTM E308', 'Integration', 'astm2015']
Multi-Spectral Computations
***************************
.. code-block:: python
msds = np.array(
[
[
[
0.01367208,
0.09127947,
0.01524376,
0.02810712,
0.19176012,
0.04299992,
],
[
0.00959792,
0.25822842,
0.41388571,
0.22275120,
0.00407416,
0.37439537,
],
[
0.01791409,
0.29707789,
0.56295109,
0.23752193,
0.00236515,
0.58190280,
],
],
[
[
0.01492332,
0.10421912,
0.02240025,
0.03735409,
0.57663846,
0.32416266,
],
[
0.04180972,
0.26402685,
0.03572137,
0.00413520,
0.41808194,
0.24696727,
],
[
0.00628672,
0.11454948,
0.02198825,
0.39906919,
0.63640803,
0.01139849,
],
],
[
[
0.04325933,
0.26825359,
0.23732357,
0.05175860,
0.01181048,
0.08233768,
],
[
0.02484169,
0.12027161,
0.00541695,
0.00654612,
0.18603799,
0.36247808,
],
[
0.03102159,
0.16815442,
0.37186235,
0.08610666,
0.00413520,
0.78492409,
],
],
[
[
0.11682307,
0.78883040,
0.74468607,
0.83375293,
0.90571451,
0.70054168,
],
[
0.06321812,
0.41898224,
0.15190357,
0.24591440,
0.55301750,
0.00657664,
],
[
0.00305180,
0.11288624,
0.11357290,
0.12924391,
0.00195315,
0.21771573,
],
],
]
)
colour.msds_to_XYZ(
msds,
method="Integration",
shape=colour.SpectralShape(400, 700, 60),
)
.. code-block:: text
array([[[ 7.68544647, 4.09414317, 8.49324254],
[ 17.12567298, 27.77681821, 25.52573685],
[ 19.10280411, 34.45851476, 29.76319628]],
[[ 18.03375827, 8.62340812, 9.71702574],
[ 15.03110867, 6.54001068, 24.53208465],
[ 37.68269495, 26.4411103 , 10.66361816]],
[[ 8.09532373, 12.75333339, 25.79613956],
[ 7.09620297, 2.79257389, 11.15039854],
[ 8.933163 , 19.39985815, 17.14915636]],
[[ 80.00969553, 80.39810464, 76.08184429],
[ 33.27611427, 24.38947838, 39.34919287],
[ 8.89425686, 11.05185138, 10.86767594]]])
.. code-block:: python
sorted(colour.MSDS_TO_XYZ_METHODS)
.. code-block:: text
['ASTM E308', 'Integration', 'astm2015']
Blackbody Spectral Radiance Computation
***************************************
.. code-block:: python
colour.sd_blackbody(5000)
.. code-block:: text
SpectralDistribution([[ 360. , 6654.27827064],
[ 361. , 6709.60527925],
[ 362. , 6764.82512152],
...
[ 778. , 10606.80038243],
[ 779. , 10590.33272593],
[ 780. , 10573.85196369]],
SpragueInterpolator,
{},
Extrapolator,
{'method': 'Constant', 'left': None, 'right': None})
Dominant, Complementary Wavelength & Colour Purity Computation
**************************************************************
.. code-block:: python
xy = [0.54369557, 0.32107944]
xy_n = [0.31270000, 0.32900000]
colour.dominant_wavelength(xy, xy_n)
.. code-block:: text
(array(616.0),
array([ 0.68354746, 0.31628409]),
array([ 0.68354746, 0.31628409]))
Lightness Computation
*********************
.. code-block:: python
colour.lightness(12.19722535)
.. code-block:: text
41.527875844653451
.. code-block:: python
sorted(colour.LIGHTNESS_METHODS)
.. code-block:: text
['Abebe 2017',
'CIE 1976',
'Fairchild 2010',
'Fairchild 2011',
'Glasser 1958',
'Lstar1976',
'Wyszecki 1963']
Luminance Computation
*********************
.. code-block:: python
colour.luminance(41.52787585)
.. code-block:: text
12.197225353400775
.. code-block:: python
sorted(colour.LUMINANCE_METHODS)
.. code-block:: text
['ASTM D1535',
'CIE 1976',
'Fairchild 2010',
'Fairchild 2011',
'Newhall 1943',
'astm2008',
'cie1976']
Whiteness Computation
*********************
.. code-block:: python
XYZ = [95.00000000, 100.00000000, 105.00000000]
XYZ_0 = [94.80966767, 100.00000000, 107.30513595]
colour.whiteness(XYZ, XYZ_0)
.. code-block:: text
array([ 93.756 , -1.33000001])
.. code-block:: python
sorted(colour.WHITENESS_METHODS)
.. code-block:: text
['ASTM E313',
'Berger 1959',
'CIE 2004',
'Ganz 1979',
'Stensby 1968',
'Taube 1960',
'cie2004']
Yellowness Computation
**********************
.. code-block:: python
XYZ = [95.00000000, 100.00000000, 105.00000000]
colour.yellowness(XYZ)
.. code-block:: text
4.3400000000000034
.. code-block:: python
sorted(colour.YELLOWNESS_METHODS)
.. code-block:: text
['ASTM D1925', 'ASTM E313', 'ASTM E313 Alternative']
Luminous Flux, Efficiency & Efficacy Computation
************************************************
.. code-block:: python
sd = colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"]
colour.luminous_flux(sd)
.. code-block:: text
23807.655527367198
.. code-block:: python
sd = colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"]
colour.luminous_efficiency(sd)
.. code-block:: text
0.19943935624521045
.. code-block:: python
sd = colour.SDS_LIGHT_SOURCES["Neodimium Incandescent"]
colour.luminous_efficacy(sd)
.. code-block:: text
136.21708031547874
Contrast Sensitivity Function - ``colour.contrast``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
colour.contrast_sensitivity_function(u=4, X_0=60, E=65)
.. code-block:: text
358.51180789884984
.. code-block:: python
sorted(colour.CONTRAST_SENSITIVITY_METHODS)
.. code-block:: text
['Barten 1999']
Colour Difference - ``colour.difference``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
Lab_1 = [100.00000000, 21.57210357, 272.22819350]
Lab_2 = [100.00000000, 426.67945353, 72.39590835]
colour.delta_E(Lab_1, Lab_2)
.. code-block:: text
94.035649026659485
.. code-block:: python
sorted(colour.DELTA_E_METHODS)
.. code-block:: text
['CAM02-LCD',
'CAM02-SCD',
'CAM02-UCS',
'CAM16-LCD',
'CAM16-SCD',
'CAM16-UCS',
'CIE 1976',
'CIE 1994',
'CIE 2000',
'CMC',
'DIN99',
'HyAB',
'HyCH',
'ITP',
'cie1976',
'cie1994',
'cie2000']
IO - ``colour.io``
~~~~~~~~~~~~~~~~~~
Images
******
.. code-block:: python
RGB = colour.read_image("Ishihara_Colour_Blindness_Test_Plate_3.png")
RGB.shape
.. code-block:: text
(276, 281, 3)
Spectral Images - Fichet et al. (2021)
**************************************
.. code-block:: python
components = colour.read_spectral_image_Fichet2021("Polarised.exr")
list(components.keys())
.. code-block:: text
['S0', 'S1', 'S2', 'S3']
Look Up Table (LUT) Data
************************
.. code-block:: python
LUT = colour.read_LUT("ACES_Proxy_10_to_ACES.cube")
print(LUT)
.. code-block:: text
LUT3x1D - ACES Proxy 10 to ACES
-------------------------------
Dimensions : 2
Domain : [[0 0 0]
[1 1 1]]
Size : (32, 3)
.. code-block:: python
RGB = [0.17224810, 0.09170660, 0.06416938]
LUT.apply(RGB)
.. code-block:: text
array([ 0.00575674, 0.00181493, 0.00121419])
Colour Models - ``colour.models``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CIE xyY Colourspace
*******************
.. code-block:: python
colour.XYZ_to_xyY([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.54369557, 0.32107944, 0.12197225])
CIE L*a*b* Colourspace
**********************
.. code-block:: python
colour.XYZ_to_Lab([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 41.52787529, 52.63858304, 26.92317922])
CIE L*u*v* Colourspace
**********************
.. code-block:: python
colour.XYZ_to_Luv([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 41.52787529, 96.83626054, 17.75210149])
CIE 1960 UCS Colourspace
************************
.. code-block:: python
colour.XYZ_to_UCS([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.13769339, 0.12197225, 0.1053731 ])
CIE 1964 U*V*W* Colourspace
***************************
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
colour.XYZ_to_UVW(XYZ)
.. code-block:: text
array([ 94.55035725, 11.55536523, 40.54757405])
CAM02-LCD, CAM02-SCD, and CAM02-UCS Colourspaces - Luo, Cui and Li (2006)
*************************************************************************
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
XYZ_w = [95.05, 100.00, 108.88]
L_A = 318.31
Y_b = 20.0
surround = colour.VIEWING_CONDITIONS_CIECAM02["Average"]
specification = colour.XYZ_to_CIECAM02(XYZ, XYZ_w, L_A, Y_b, surround)
JMh = (specification.J, specification.M, specification.h)
colour.JMh_CIECAM02_to_CAM02UCS(JMh)
.. code-block:: text
array([ 47.16899898, 38.72623785, 15.8663383 ])
.. code-block:: python
XYZ = [0.20654008, 0.12197225, 0.05136952]
XYZ_w = [95.05 / 100, 100.00 / 100, 108.88 / 100]
colour.XYZ_to_CAM02UCS(XYZ, XYZ_w=XYZ_w, L_A=L_A, Y_b=Y_b)
.. code-block:: text
array([ 47.16899898, 38.72623785, 15.8663383 ])
CAM16-LCD, CAM16-SCD, and CAM16-UCS Colourspaces - Li et al. (2017)
*******************************************************************
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
XYZ_w = [95.05, 100.00, 108.88]
L_A = 318.31
Y_b = 20.0
surround = colour.VIEWING_CONDITIONS_CAM16["Average"]
specification = colour.XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)
JMh = (specification.J, specification.M, specification.h)
colour.JMh_CAM16_to_CAM16UCS(JMh)
.. code-block:: text
array([ 46.55542238, 40.22460974, 14.25288392])
.. code-block:: python
XYZ = [0.20654008, 0.12197225, 0.05136952]
XYZ_w = [95.05 / 100, 100.00 / 100, 108.88 / 100]
colour.XYZ_to_CAM16UCS(XYZ, XYZ_w=XYZ_w, L_A=L_A, Y_b=Y_b)
.. code-block:: text
array([ 46.55542238, 40.22460974, 14.25288392])
DIN99 Colourspace and DIN99b, DIN99c, DIN99d Refined Formulas
*************************************************************
.. code-block:: python
Lab = [41.52787529, 52.63858304, 26.92317922]
colour.Lab_to_DIN99(Lab)
.. code-block:: text
array([ 53.22821988, 28.41634656, 3.89839552])
ICaCb Colourspace
******************
.. code-block:: python
XYZ_to_ICaCb(np.array([0.20654008, 0.12197225, 0.05136952]))
.. code-block:: text
array([ 0.06875297, 0.05753352, 0.02081548])
IgPgTg Colourspace
******************
.. code-block:: python
colour.XYZ_to_IgPgTg([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.42421258, 0.18632491, 0.10689223])
IPT Colourspace
***************
.. code-block:: python
colour.XYZ_to_IPT([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.38426191, 0.38487306, 0.18886838])
Jzazbz Colourspace
******************
.. code-block:: python
colour.XYZ_to_Jzazbz([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.00535048, 0.00924302, 0.00526007])
hdr-CIELAB Colourspace
**********************
.. code-block:: python
colour.XYZ_to_hdr_CIELab([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 51.87002062, 60.4763385 , 32.14551912])
hdr-IPT Colourspace
*******************
.. code-block:: python
colour.XYZ_to_hdr_IPT([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 25.18261761, -22.62111297, 3.18511729])
Hunter L,a,b Colour Scale
*************************
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
colour.XYZ_to_Hunter_Lab(XYZ)
.. code-block:: text
array([ 34.92452577, 47.06189858, 14.38615107])
Hunter Rd,a,b Colour Scale
**************************
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
colour.XYZ_to_Hunter_Rdab(XYZ)
.. code-block:: text
array([ 12.197225 , 57.12537874, 17.46241341])
Oklab Colourspace
*****************
.. code-block:: python
colour.XYZ_to_Oklab([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.51634019, 0.154695 , 0.06289579])
OSA UCS Colourspace
*******************
.. code-block:: python
XYZ = [0.20654008 * 100, 0.12197225 * 100, 0.05136952 * 100]
colour.XYZ_to_OSA_UCS(XYZ)
.. code-block:: text
array([-3.0049979 , 2.99713697, -9.66784231])
ProLab Colourspace
******************
.. code-block:: python
colour.XYZ_to_ProLab([0.51634019, 0.15469500, 0.06289579])
.. code-block:: text
array([1.24610688, 2.39525236, 0.41902126])
Ragoo and Farup (2021) Optimised IPT Colourspace
************************************************
.. code-block:: python
colour.XYZ_to_IPT_Ragoo2021([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.42248243, 0.2910514 , 0.20410663])
Yrg Colourspace - Kirk (2019)
*****************************
.. code-block:: python
colour.XYZ_to_Yrg([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
array([ 0.13137801, 0.49037645, 0.37777388])
Y'CbCr Colour Encoding
**********************
.. code-block:: python
colour.RGB_to_YCbCr([1.0, 1.0, 1.0])
.. code-block:: text
array([ 0.92156863, 0.50196078, 0.50196078])
YCoCg Colour Encoding
*********************
.. code-block:: python
colour.RGB_to_YCoCg([0.75, 0.75, 0.0])
.. code-block:: text
array([ 0.5625, 0.375 , 0.1875])
ICtCp Colour Encoding
*********************
.. code-block:: python
colour.RGB_to_ICtCp([0.45620519, 0.03081071, 0.04091952])
.. code-block:: text
array([ 0.07351364, 0.00475253, 0.09351596])
HSV Colourspace
***************
.. code-block:: python
colour.RGB_to_HSV([0.45620519, 0.03081071, 0.04091952])
.. code-block:: text
array([ 0.99603944, 0.93246304, 0.45620519])
IHLS Colourspace
****************
.. code-block:: python
colour.RGB_to_IHLS([0.45620519, 0.03081071, 0.04091952])
.. code-block:: text
array([ 6.26236117, 0.12197943, 0.42539448])
Prismatic Colourspace
*********************
.. code-block:: python
colour.RGB_to_Prismatic([0.25, 0.50, 0.75])
.. code-block:: text
array([ 0.75 , 0.16666667, 0.33333333, 0.5 ])
RGB Colourspace and Transformations
***********************************
.. code-block:: python
XYZ = [0.21638819, 0.12570000, 0.03847493]
illuminant_XYZ = [0.34570, 0.35850]
illuminant_RGB = [0.31270, 0.32900]
chromatic_adaptation_transform = "Bradford"
matrix_XYZ_to_RGB = [
[3.24062548, -1.53720797, -0.49862860],
[-0.96893071, 1.87575606, 0.04151752],
[0.05571012, -0.20402105, 1.05699594],
]
colour.XYZ_to_RGB(
XYZ,
illuminant_XYZ,
illuminant_RGB,
matrix_XYZ_to_RGB,
chromatic_adaptation_transform,
)
.. code-block:: text
array([ 0.45595571, 0.03039702, 0.04087245])
RGB Colourspace Derivation
**************************
.. code-block:: python
p = [0.73470, 0.26530, 0.00000, 1.00000, 0.00010, -0.07700]
w = [0.32168, 0.33767]
colour.normalised_primary_matrix(p, w)
.. code-block:: text
array([[ 9.52552396e-01, 0.00000000e+00, 9.36786317e-05],
[ 3.43966450e-01, 7.28166097e-01, -7.21325464e-02],
[ 0.00000000e+00, 0.00000000e+00, 1.00882518e+00]])
RGB Colourspaces
****************
.. code-block:: python
sorted(colour.RGB_COLOURSPACES)
.. code-block:: text
['ACES2065-1',
'ACEScc',
'ACEScct',
'ACEScg',
'ACESproxy',
'ARRI Wide Gamut 3',
'ARRI Wide Gamut 4',
'Adobe RGB (1998)',
'Adobe Wide Gamut RGB',
'Apple RGB',
'Best RGB',
'Beta RGB',
'Blackmagic Wide Gamut',
'CIE RGB',
'CIE XYZ-D65 - Scene-referred',
'Cinema Gamut',
'ColorMatch RGB',
'DCDM XYZ',
'DCI-P3',
'DCI-P3-P',
'DJI D-Gamut',
'DRAGONcolor',
'DRAGONcolor2',
'DaVinci Wide Gamut',
'Display P3',
'Don RGB 4',
'EBU Tech. 3213-E',
'ECI RGB v2',
'ERIMM RGB',
'Ekta Space PS 5',
'F-Gamut',
'F-Gamut C',
'FilmLight E-Gamut',
'Gamma 1.8 Encoded Rec.709',
'Gamma 2.2 Encoded AP1',
'Gamma 2.2 Encoded AdobeRGB',
'Gamma 2.2 Encoded Rec.709',
'ITU-R BT.2020',
'ITU-R BT.470 - 525',
'ITU-R BT.470 - 625',
'ITU-R BT.709',
'ITU-T H.273 - 22 Unspecified',
'ITU-T H.273 - Generic Film',
'Linear AdobeRGB',
'Linear P3-D65',
'Linear Rec.2020',
'Linear Rec.709 (sRGB)',
'Max RGB',
'N-Gamut',
'NTSC (1953)',
'NTSC (1987)',
'P3-D65',
'PLASA ANSI E1.54',
'Pal/Secam',
'ProPhoto RGB',
'Protune Native',
'REDWideGamutRGB',
'REDcolor',
'REDcolor2',
'REDcolor3',
'REDcolor4',
'RIMM RGB',
'ROMM RGB',
'Russell RGB',
'S-Gamut',
'S-Gamut3',
'S-Gamut3.Cine',
'SMPTE 240M',
'SMPTE C',
'Sharp RGB',
'V-Gamut',
'Venice S-Gamut3',
'Venice S-Gamut3.Cine',
'Xtreme RGB',
'aces',
'adobe1998',
'g18_rec709_scene',
'g22_adobergb_scene',
'g22_ap1_scene',
'g22_rec709_scene',
'lin_adobergb_scene',
'lin_ap0_scene',
'lin_ap1_scene',
'lin_ciexyzd65_scene',
'lin_p3d65_scene',
'lin_rec2020_scene',
'lin_rec709_scene',
'prophoto',
'sRGB',
'sRGB Encoded AP1',
'sRGB Encoded P3-D65',
'sRGB Encoded Rec.709 (sRGB)',
'srgb_ap1_scene',
'srgb_p3d65_scene',
'srgb_rec709_scene']
OETFs
*****
.. code-block:: python
sorted(colour.OETFS)
.. code-block:: text
['ARIB STD-B67',
'Blackmagic Film Generation 5',
'DaVinci Intermediate',
'ITU-R BT.2020',
'ITU-R BT.2100 HLG',
'ITU-R BT.2100 PQ',
'ITU-R BT.601',
'ITU-R BT.709',
'ITU-T H.273 IEC 61966-2',
'ITU-T H.273 Log',
'ITU-T H.273 Log Sqrt',
'SMPTE 240M']
EOTFs
*****
.. code-block:: python
sorted(colour.EOTFS)
.. code-block:: text
['DCDM',
'DICOM GSDF',
'ITU-R BT.1886',
'ITU-R BT.2100 HLG',
'ITU-R BT.2100 PQ',
'ITU-T H.273 ST.428-1',
'SMPTE 240M',
'ST 2084',
'sRGB']
OOTFs
*****
.. code-block:: python
sorted(colour.OOTFS)
.. code-block:: text
['ITU-R BT.2100 HLG', 'ITU-R BT.2100 PQ']
Log Encoding / Decoding
***********************
.. code-block:: python
sorted(colour.LOG_ENCODINGS)
.. code-block:: text
['ACEScc',
'ACEScct',
'ACESproxy',
'ARRI LogC3',
'ARRI LogC4',
'Apple Log Profile',
'Canon Log',
'Canon Log 2',
'Canon Log 3',
'Cineon',
'D-Log',
'ERIMM RGB',
'F-Log',
'F-Log2',
'Filmic Pro 6',
'L-Log',
'Log2',
'Log3G10',
'Log3G12',
'N-Log',
'PLog',
'Panalog',
'Protune',
'REDLog',
'REDLogFilm',
'S-Log',
'S-Log2',
'S-Log3',
'T-Log',
'V-Log',
'ViperLog']
CCTFs Encoding / Decoding
*************************
.. code-block:: python
sorted(colour.CCTF_ENCODINGS)
.. code-block:: text
['ACEScc',
'ACEScct',
'ACESproxy',
'ARIB STD-B67',
'ARRI LogC3',
'ARRI LogC4',
'Apple Log Profile',
'Blackmagic Film Generation 5',
'Canon Log',
'Canon Log 2',
'Canon Log 3',
'Cineon',
'D-Log',
'DCDM',
'DICOM GSDF',
'DaVinci Intermediate',
'ERIMM RGB',
'F-Log',
'F-Log2',
'Filmic Pro 6',
'Gamma 2.2',
'Gamma 2.4',
'Gamma 2.6',
'ITU-R BT.1886',
'ITU-R BT.2020',
'ITU-R BT.2100 HLG',
'ITU-R BT.2100 PQ',
'ITU-R BT.601',
'ITU-R BT.709',
'ITU-T H.273 IEC 61966-2',
'ITU-T H.273 Log',
'ITU-T H.273 Log Sqrt',
'ITU-T H.273 ST.428-1',
'L-Log',
'Log2',
'Log3G10',
'Log3G12',
'N-Log',
'PLog',
'Panalog',
'ProPhoto RGB',
'Protune',
'REDLog',
'REDLogFilm',
'RIMM RGB',
'ROMM RGB',
'S-Log',
'S-Log2',
'S-Log3',
'SMPTE 240M',
'ST 2084',
'T-Log',
'V-Log',
'ViperLog',
'sRGB']
Recommendation ITU-T H.273 Code points for Video Signal Type Identification
***************************************************************************
.. code-block:: python
colour.COLOUR_PRIMARIES_ITUTH273.keys()
.. code-block:: text
dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 22, 23])
.. code-block:: python
colour.models.describe_video_signal_colour_primaries(1)
.. code-block:: text
===============================================================================
* *
* Colour Primaries: 1 *
* ------------------- *
* *
* Primaries : [[ 0.64 0.33] *
* [ 0.3 0.6 ] *
* [ 0.15 0.06]] *
* Whitepoint : [ 0.3127 0.329 ] *
* Whitepoint Name : D65 *
* NPM : [[ 0.4123908 0.35758434 0.18048079] *
* [ 0.21263901 0.71516868 0.07219232] *
* [ 0.01933082 0.11919478 0.95053215]] *
* NPM -1 : [[ 3.24096994 -1.53738318 -0.49861076] *
* [-0.96924364 1.8759675 0.04155506] *
* [ 0.05563008 -0.20397696 1.05697151]] *
* FFmpeg Constants : ['AVCOL_PRI_BT709', 'BT709'] *
* *
===============================================================================
.. code-block:: python
colour.TRANSFER_CHARACTERISTICS_ITUTH273.keys()
.. code-block:: text
dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
.. code-block:: python
colour.models.describe_video_signal_transfer_characteristics(1)
.. code-block:: text
===============================================================================
* *
* Transfer Characteristics: 1 *
* --------------------------- *
* *
* Function : <function oetf_BT709 at 0x165bb3550> *
* FFmpeg Constants : ['AVCOL_TRC_BT709', 'BT709'] *
* *
===============================================================================
.. code-block:: python
colour.MATRIX_COEFFICIENTS_ITUTH273.keys()
.. code-block:: text
dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
.. code-block:: python
colour.models.describe_video_signal_matrix_coefficients(1)
.. code-block:: text
===============================================================================
* *
* Matrix Coefficients: 1 *
* ---------------------- *
* *
* Matrix Coefficients : [ 0.2126 0.0722] *
* FFmpeg Constants : ['AVCOL_SPC_BT709', 'BT709'] *
* *
===============================================================================
Colour Notation Systems - ``colour.notation``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Munsell Value
*************
.. code-block:: python
colour.munsell_value(12.23634268)
.. code-block:: text
4.0824437076525664
.. code-block:: python
sorted(colour.MUNSELL_VALUE_METHODS)
.. code-block:: text
['ASTM D1535',
'Ladd 1955',
'McCamy 1987',
'Moon 1943',
'Munsell 1933',
'Priest 1920',
'Saunderson 1944',
'astm2008']
Munsell Colour
**************
.. code-block:: python
colour.xyY_to_munsell_colour([0.38736945, 0.35751656, 0.59362000])
.. code-block:: text
'4.2YR 8.1/5.3'
.. code-block:: python
colour.munsell_colour_to_xyY("4.2YR 8.1/5.3")
.. code-block:: text
array([ 0.38736945, 0.35751656, 0.59362 ])
Optical Phenomena - ``colour.phenomena``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
colour.sd_rayleigh_scattering()
.. code-block:: text
SpectralDistribution([[ 3.60000000e+02, 5.60246579e-01],
[ 3.61000000e+02, 5.53748137e-01],
[ 3.62000000e+02, 5.47344692e-01],
...
[ 7.78000000e+02, 2.37790178e-02],
[ 7.79000000e+02, 2.36559421e-02],
[ 7.80000000e+02, 2.35336632e-02]],
SpragueInterpolator,
{},
Extrapolator,
{'method': 'Constant', 'left': None, 'right': None})
Light Quality - ``colour.quality``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Colour Fidelity Index
*********************
.. code-block:: python
colour.colour_fidelity_index(colour.SDS_ILLUMINANTS["FL2"])
.. code-block:: text
70.120824401428848
.. code-block:: python
sorted(colour.COLOUR_FIDELITY_INDEX_METHODS)
.. code-block:: text
['ANSI/IES TM-30-18', 'CIE 2017']
Colour Quality Scale
********************
.. code-block:: python
colour.colour_quality_scale(colour.SDS_ILLUMINANTS["FL2"])
.. code-block:: text
64.111822015662824
.. code-block:: python
sorted(colour.COLOUR_QUALITY_SCALE_METHODS)
.. code-block:: text
['NIST CQS 7.4', 'NIST CQS 9.0']
Colour Rendering Index
**********************
.. code-block:: python
colour.colour_rendering_index(colour.SDS_ILLUMINANTS["FL2"])
.. code-block:: text
64.233724121664793
Academy Spectral Similarity Index (SSI)
***************************************
.. code-block:: python
colour.spectral_similarity_index(
colour.SDS_ILLUMINANTS["C"], colour.SDS_ILLUMINANTS["D65"]
)
.. code-block:: text
94.0
Spectral Up-Sampling & Recovery - ``colour.recovery``
Reflectance Recovery
.. code-block:: python
colour.XYZ_to_sd([0.20654008, 0.12197225, 0.05136952])
.. code-block:: text
SpectralDistribution([[ 3.60000000e+02, 8.52694330e-02], [ 3.65000000e+02, 8.52203359e-02], [ 3.70000000e+02, 8.52841304e-02], ... [ 7.70000000e+02, 4.46546872e-01], [ 7.75000000e+02, 4.46638451e-01], [ 7.80000000e+02, 4.46641739e-01]], SpragueInterpolator, {}, Extrapolator, {'method': 'Constant', 'left': None, 'right': None})
.. code-block:: python
sorted(colour.REFLECTANCE_RECOVERY_METHODS)
.. code-block:: text
['Jakob 2019', 'Mallett 2019', 'Meng 2015', 'Otsu 2018', 'Smits 1999']
Camera RGB Sensitivities Recovery
.. code-block:: python
illuminant = colour.colorimetry.SDS_ILLUMINANTS["D65"]
sensitivities = colour.characterisation.MSDS_CAMERA_SENSITIVITIES["Nikon 5100 (NPL)"]
reflectances = [
sd.copy().align(colour.recovery.SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017)
for sd in colour.characterisation.SDS_COLOURCHECKERS["BabelColor Average"].values()
]
reflectances = colour.colorimetry.sds_and_msds_to_msds(reflectances)
RGB = colour.colorimetry.msds_to_XYZ(
reflectances,
method="Integration",
cmfs=sensitivities,
illuminant=illuminant,
k=0.01,
shape=colour.recovery.SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
)
colour.recovery.RGB_to_msds_camera_sensitivities_Jiang2013(
RGB,
illuminant,
reflectances,
colour.recovery.BASIS_FUNCTIONS_DYER2017,
colour.recovery.SPECTRAL_SHAPE_BASIS_FUNCTIONS_DYER2017,
)
.. code-block:: text
RGB_CameraSensitivities([[ 4.00000000e+02, 7.04378461e-03, 9.21260449e-03,
-7.64080878e-03],
[ 4.10000000e+02, -8.76715607e-03, 1.12726694e-02,
6.37434190e-03],
[ 4.20000000e+02, 4.58126856e-02, 7.18000418e-02,
4.00001696e-01],
...
[ 6.80000000e+02, 4.00195568e-02, 5.55512389e-03,
1.36794925e-03],
[ 6.90000000e+02, -4.32240535e-03, 2.49731193e-03,
3.80303275e-04],
[ 7.00000000e+02, -6.00395414e-03, 1.54678227e-03,
5.40394352e-04]],
['red', 'green', 'blue'],
SpragueInterpolator,
{},
Extrapolator,
{'method': 'Constant', 'left': None, 'right': None})
Correlated Colour Temperature Computation Methods - colour.temperature
.. code-block:: python
colour.uv_to_CCT([0.1978, 0.3122])
.. code-block:: text
array([ 6.50747479e+03, 3.22334634e-03])
.. code-block:: python
sorted(colour.UV_TO_CCT_METHODS)
.. code-block:: text
['Krystek 1985', 'Ohno 2013', 'Planck 1900', 'Robertson 1968', 'ohno2013', 'robertson1968']
.. code-block:: python
sorted(colour.XY_TO_CCT_METHODS)
.. code-block:: text
['CIE Illuminant D Series',
'Hernandez 1999',
'Kang 2002',
'McCamy 1992',
'daylight',
'hernandez1999',
'kang2002',
'mccamy1992']
Colour Volume - ``colour.volume``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
colour.RGB_colourspace_volume_MonteCarlo(colour.RGB_COLOURSPACE_RGB["sRGB"])
.. code-block:: text
821958.30000000005
Geometry Primitives Generation - ``colour.geometry``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: python
colour.primitive("Grid")
.. code-block:: text
(array([ ([-0.5, 0.5, 0. ], [ 0., 1.], [ 0., 0., 1.], [ 0., 1., 0., 1.]),
([ 0.5, 0.5, 0. ], [ 1., 1.], [ 0., 0., 1.], [ 1., 1., 0., 1.]),
([-0.5, -0.5, 0. ], [ 0., 0.], [ 0., 0., 1.], [ 0., 0., 0., 1.]),
([ 0.5, -0.5, 0. ], [ 1., 0.], [ 0., 0., 1.], [ 1., 0., 0., 1.])],
dtype=[('position', '<f4', (3,)), ('uv', '<f4', (2,)), ('normal', '<f4', (3,)), ('colour', '<f4', (4,))]), array([[0, 2, 1],
[2, 3, 1]], dtype=uint32), array([[0, 2],
[2, 3],
[3, 1],
[1, 0]], dtype=uint32))
.. code-block:: python
sorted(colour.PRIMITIVE_METHODS)
.. code-block:: text
['Cube', 'Grid']
.. code-block:: python
colour.primitive_vertices("Quad MPL")
.. code-block:: text
array([[ 0., 0., 0.],
[ 1., 0., 0.],
[ 1., 1., 0.],
[ 0., 1., 0.]])
sorted(colour.PRIMITIVE_VERTICES_METHODS)
['Cube MPL', 'Grid MPL', 'Quad MPL', 'Sphere']
Plotting - ``colour.plotting``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Most of the objects are available from the ``colour.plotting`` namespace:
.. code-block:: python
from colour.plotting import *
colour_style()
Visible Spectrum
****************
.. code-block:: python
plot_visible_spectrum("CIE 1931 2 Degree Standard Observer")
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Visible_Spectrum.png
Spectral Distribution
*********************
.. code-block:: python
plot_single_illuminant_sd("FL1")
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Illuminant_F1_SD.png
Blackbody
*********
.. code-block:: python
blackbody_sds = [
colour.sd_blackbody(i, colour.SpectralShape(1, 10001, 10))
for i in range(1000, 15000, 1000)
]
plot_multi_sds(
blackbody_sds,
y_label="W / (sr m$^2$) / m",
plot_kwargs={"use_sd_colours": True, "normalise_sd_colours": True},
legend_location="upper right",
bounding_box=(0, 1250, 0, 2.5e6),
)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Blackbodies.png
Colour Matching Functions
*************************
.. code-block:: python
plot_single_cmfs(
"Stockman & Sharpe 2 Degree Cone Fundamentals",
y_label="Sensitivity",
bounding_box=(390, 870, 0, 1.1),
)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Cone_Fundamentals.png
Luminous Efficiency
*******************
.. code-block:: python
sd_mesopic_luminous_efficiency_function = (
colour.sd_mesopic_luminous_efficiency_function(0.2)
)
plot_multi_sds(
(
sd_mesopic_luminous_efficiency_function,
colour.colorimetry.SDS_LEFS_PHOTOPIC["CIE 1924 Photopic Standard Observer"],
colour.colorimetry.SDS_LEFS_SCOTOPIC["CIE 1951 Scotopic Standard Observer"],
),
y_label="Luminous Efficiency",
legend_location="upper right",
y_tighten=True,
margins=(0, 0, 0, 0.1),
)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Luminous_Efficiency.png
Colour Checker
**************
.. code-block:: python
from colour.characterisation.dataset.colour_checkers.sds import (
COLOURCHECKER_INDEXES_TO_NAMES_MAPPING,
)
plot_multi_sds(
[
colour.SDS_COLOURCHECKERS["BabelColor Average"][value]
for key, value in sorted(COLOURCHECKER_INDEXES_TO_NAMES_MAPPING.items())
],
plot_kwargs={
"use_sd_colours": True,
},
title=("BabelColor Average - " "Spectral Distributions"),
)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_BabelColor_Average.png
.. code-block:: python
plot_single_colour_checker("ColorChecker 2005", text_kwargs={"visible": False})
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_ColorChecker_2005.png
Chromaticities Prediction
*************************
.. code-block:: python
plot_corresponding_chromaticities_prediction(2, "Von Kries", "Bianco 2010")
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Chromaticities_Prediction.png
Chromaticities
**************
.. code-block:: python
import numpy as np
RGB = np.random.random((32, 32, 3))
plot_RGB_chromaticities_in_chromaticity_diagram_CIE1931(
RGB,
"ITU-R BT.709",
colourspaces=["ACEScg", "S-Gamut", "Pointer Gamut"],
)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Chromaticities_CIE_1931_Chromaticity_Diagram.png
Colour Rendering Index Bars
***************************
.. code-block:: python
plot_single_sd_colour_rendering_index_bars(colour.SDS_ILLUMINANTS["FL2"])
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_CRI.png
ANSI/IES TM-30-18 Colour Rendition Report
*****************************************
.. code-block:: python
plot_single_sd_colour_rendition_report(colour.SDS_ILLUMINANTS["FL2"])
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Colour_Rendition_Report.png
Gamut Section
*************
.. code-block:: python
plot_visible_spectrum_section(section_colours="RGB", section_opacity=0.15)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Plot_Visible_Spectrum_Section.png
.. code-block:: python
plot_RGB_colourspace_section("sRGB", section_colours="RGB", section_opacity=0.15)
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_Plot_RGB_Colourspace_Section.png
Colour Temperature
******************
.. code-block:: python
plot_planckian_locus_in_chromaticity_diagram_CIE1960UCS(["A", "B", "C"])
.. image:: https://colour.readthedocs.io/en/develop/_static/Examples_Plotting_CCT_CIE_1960_UCS_Chromaticity_Diagram.png
User Guide
----------
Installation
~~~~~~~~~~~~
**Colour** and its primary dependencies can be easily installed from the
`Python Package Index <https://pypi.org/project/colour-science>`__
by issuing this command in a shell:
.. code-block:: bash
$ pip install --user colour-science
The detailed installation procedure for the secondary dependencies is
described in the `Installation Guide <https://www.colour-science.org/installation-guide>`__.
**Colour** is also available for `Anaconda <https://www.anaconda.com/download>`__
from *Continuum Analytics* via `conda-forge <https://conda-forge.org>`__:
.. code-block:: bash
$ conda install -c conda-forge colour-science
Tutorial
~~~~~~~~
The `static tutorial <https://colour.readthedocs.io/en/develop/tutorial.html>`__
provides an introduction to **Colour**. An interactive version is available via
`Google Colab <https://colab.research.google.com/notebook#fileId=1Im9J7or9qyClQCv5sPHmKdyiQbG4898K&offline=true&sandboxMode=true>`__.
How-To
~~~~~~
The `Google Colab How-To <https://colab.research.google.com/notebook#fileId=1NRcdXSCshivkwoU2nieCvC3y14fx1X4X&offline=true&sandboxMode=true>`__
guide for **Colour** shows various techniques to solve specific problems and
highlights some interesting use cases.
Contributing
~~~~~~~~~~~~
If you would like to contribute to **Colour**, please refer to the following
`Contributing <https://www.colour-science.org/contributing>`__ guide.
Changes
~~~~~~~
The changes are viewable on the `Releases <https://github.com/colour-science/colour/releases>`__ page.
Bibliography
~~~~~~~~~~~~
The bibliography is available on the `Bibliography <https://www.colour-science.org/bibliography>`__ page.
It is also viewable directly from the repository in
`BibTeX <https://github.com/colour-science/colour/blob/develop/BIBLIOGRAPHY.bib>`__
format.
API Reference
-------------
The main technical reference for **Colour** is the *API Reference*:
- `Release <https://colour.readthedocs.io/en/master/reference.html>`__
- `Develop <https://colour.readthedocs.io/en/latest/reference.html>`__
See Also
--------
Software
~~~~~~~~
**Python**
- `ColorAide <https://facelessuser.github.io/coloraide>`__ by Muse, I.
- `ColorPy <http://markkness.net/colorpy/ColorPy.html>`__ by Kness, M.
- `Colorspacious <https://colorspacious.readthedocs.io>`__ by Smith, N. J., et al.
- `python-colormath <https://python-colormath.readthedocs.io>`__ by Taylor, G., et al.
**Go**
- `go-colorful <https://github.com/lucasb-eyer/go-colorful>`__ by Beyer, L., et al.
**.NET**
- `Colourful <https://github.com/tompazourek/Colourful>`__ by Pažourek, T., et al.
**Julia**
- `Colors.jl <https://github.com/JuliaGraphics/Colors.jl>`__ by Holy, T., et al.
**Matlab & Octave**
- `COLORLAB <https://www.uv.es/vista/vistavalencia/software/colorlab.html>`__ by Malo, J., et al.
- `Psychtoolbox <http://psychtoolbox.org>`__ by Brainard, D., et al.
- `The Munsell and Kubelka-Munk Toolbox <http://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html>`__ by Centore, P.
Code of Conduct
---------------
The *Code of Conduct*, adapted from the `Contributor Covenant 1.4 <https://www.contributor-covenant.org/version/1/4/code-of-conduct.html>`__,
is available on the `Code of Conduct <https://www.colour-science.org/code-of-conduct>`__ page.
Contact & Social
----------------
The *Colour Developers* can be reached via different means:
- `Email <mailto:colour-developers@colour-science.org>`__
- `Facebook <https://www.facebook.com/python.colour.science>`__
- `Github Discussions <https://github.com/colour-science/colour/discussions>`__
- `Gitter <https://gitter.im/colour-science/colour>`__
- `X <https://x.com/colour_science>`__
- `Bluesky <https://bsky.app/profile/colour-science.bsky.social>`__
.. begin-trim-long-description
Thank You!
----------
.. raw:: html
<h3 align="center">Coffee Sponsors</h3>
.. raw:: html
<table>
<tbody>
<tr>
<td align="center" valign="middle">
<a href="https://opencollective.com/static/images/default-anonymous-logo.svg" target="_blank">
<img width="98px" src="https://opencollective.com/static/images/default-anonymous-logo.svg">
</a>
<p><a href="" target="_blank">Anonymous</a></p>
</td>
<td align="center" valign="middle">
<a href="https://twitter.com/CLVPTY" target="_blank">
<img width="98px" src="https://pbs.twimg.com/profile_images/1828737659918774273/uML8EAPp_400x400.jpg">
</a>
<p><a href="https://twitter.com/CLVPTY" target="_blank">Cedric Lejeune</a></p>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
<td align="center" valign="middle">
<a href="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here" target="_blank">
<img width="98px" src="https://dummyimage.com/98x55/f9f9fc/000000.png&text=Your+Logo+Here">
</a>
</td>
</tr>
</tbody>
</table>
.. end-trim-long-description
About
-----
| **Colour** by Colour Developers
| Copyright 2013 Colour Developers â `colour-developers@colour-science.org <colour-developers@colour-science.org>`__
| This software is released under terms of BSD-3-Clause: https://opensource.org/licenses/BSD-3-Clause
| `https://github.com/colour-science/colour <https://github.com/colour-science/colour>`__
Top Related Projects
Image processing in Python
Open Source Computer Vision Library
Python Imaging Library (Fork)
matplotlib: plotting with Python
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
scikit-learn: machine learning in Python
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot