Top Related Projects
百度NLP:分词,词性标注,命名实体识别,词重要性
结巴中文分词
中文分词 词性标注 命名实体识别 依存句法分析 成分句法分析 语义依存分析 语义角色标注 指代消解 风格转换 语义相似度 新词发现 关键词短语提取 自动摘要 文本分类聚类 拼音简繁转换 自然语言处理
Python library for processing Chinese text
keras implement of transformers for humans
Quick Overview
Awesome-Chinese-NLP is a curated list of resources for Chinese Natural Language Processing (NLP). It provides a comprehensive collection of tools, datasets, papers, and other materials specifically focused on NLP tasks for the Chinese language. This repository serves as a valuable reference for researchers, developers, and enthusiasts working on Chinese language processing.
Pros
- Extensive collection of resources covering various aspects of Chinese NLP
- Regularly updated with new tools, datasets, and research papers
- Well-organized structure, making it easy to find specific resources
- Includes both open-source and commercial tools, providing a broad overview of the field
Cons
- May be overwhelming for beginners due to the large number of resources
- Some links may become outdated over time if not regularly maintained
- Lacks detailed explanations or comparisons of the listed resources
- Primarily in English, which may be a barrier for some Chinese-speaking users
Code Examples
This repository is not a code library but a curated list of resources. Therefore, there are no code examples to provide.
Getting Started
As this is not a code library, there are no specific getting started instructions. However, users can begin by exploring the repository's README file on GitHub, which provides an organized list of resources categorized by different aspects of Chinese NLP, such as:
- Chinese Word Segmentation
- Named Entity Recognition
- Sentiment Analysis
- Machine Translation
- Information Extraction
- Text Summarization
- Datasets
- Toolkits
Users can click on the links provided in each category to access the relevant resources, tools, or papers.
Competitor Comparisons
百度NLP:分词,词性标注,命名实体识别,词重要性
Pros of lac
- Focused, production-ready Chinese NLP toolkit
- Provides pre-trained models for immediate use
- Optimized for performance and efficiency
Cons of lac
- Limited scope compared to Awesome-Chinese-NLP's comprehensive resource list
- Less frequently updated than Awesome-Chinese-NLP
- Primarily maintained by a single organization (Baidu)
Code comparison
lac:
from LAC import LAC
lac = LAC(mode='lac')
text = "我爱北京天安门"
result = lac.run(text)
print(result)
Awesome-Chinese-NLP doesn't provide direct code examples but offers links to various tools and libraries. A typical usage might involve selecting a specific tool from the list and implementing it separately.
Summary
lac is a focused, ready-to-use Chinese NLP toolkit optimized for performance, while Awesome-Chinese-NLP serves as a comprehensive resource list for Chinese NLP tools and research. lac offers immediate functionality but has a narrower scope, whereas Awesome-Chinese-NLP provides a broader overview of available resources but requires additional effort to implement specific tools.
结巴中文分词
Pros of jieba
- Focused, specialized tool for Chinese word segmentation
- Lightweight and easy to integrate into projects
- Offers multiple segmentation modes (accurate, full, search engine)
Cons of jieba
- Limited to word segmentation, not a comprehensive NLP toolkit
- May require additional libraries for advanced NLP tasks
- Less frequently updated compared to Awesome-Chinese-NLP
Code Comparison
Awesome-Chinese-NLP is a curated list of resources, not a code library. However, here's a basic usage example of jieba:
import jieba
text = "我来到北京清华大学"
seg_list = jieba.cut(text, cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))
Summary
jieba is a specialized Chinese word segmentation tool, offering efficient and accurate text processing for specific tasks. It's lightweight and easy to use but limited in scope compared to the comprehensive resource list provided by Awesome-Chinese-NLP.
Awesome-Chinese-NLP serves as a curated collection of various Chinese NLP tools, datasets, and research papers, providing a broader overview of the field. While it doesn't offer direct functionality, it guides users to a wide range of resources for different NLP tasks.
Choose jieba for quick integration of Chinese word segmentation into your project. Opt for Awesome-Chinese-NLP when seeking a comprehensive guide to Chinese NLP resources and tools for more complex or diverse NLP tasks.
中文分词 词性标注 命名实体识别 依存句法分析 成分句法分析 语义依存分析 语义角色标注 指代消解 风格转换 语义相似度 新词发 现 关键词短语提取 自动摘要 文本分类聚类 拼音简繁转换 自然语言处理
Pros of HanLP
- Comprehensive NLP toolkit with a wide range of functionalities
- Actively maintained with regular updates and improvements
- Provides both Java and Python interfaces for flexibility
Cons of HanLP
- Steeper learning curve due to its extensive feature set
- May be overkill for simple NLP tasks or projects
- Requires more system resources compared to lightweight alternatives
Code Comparison
HanLP:
from hanlp_restful import HanLP
HanLP.parse('我爱自然语言处理技术!')
Awesome-Chinese-NLP (using jieba as an example):
import jieba
jieba.cut('我爱自然语言处理技术!')
Summary
HanLP is a comprehensive NLP toolkit offering a wide range of functionalities for Chinese language processing. It provides both Java and Python interfaces, making it versatile for different development environments. However, its extensive feature set may result in a steeper learning curve and higher resource requirements.
Awesome-Chinese-NLP, on the other hand, is a curated list of resources and tools for Chinese NLP. It doesn't provide direct functionality but serves as a valuable reference for various Chinese NLP tools and libraries. This makes it more suitable for developers looking to explore different options or find specific tools for their projects.
While HanLP offers a unified solution for many NLP tasks, Awesome-Chinese-NLP allows users to pick and choose from a variety of specialized tools, potentially resulting in a more tailored and lightweight solution for specific use cases.
Python library for processing Chinese text
Pros of snownlp
- Focused tool: Provides a specific set of Chinese NLP functionalities
- Ready-to-use: Offers pre-trained models for immediate application
- Lightweight: Easy to install and integrate into projects
Cons of snownlp
- Limited scope: Covers fewer NLP tasks compared to Awesome-Chinese-NLP
- Less frequently updated: May not include the latest advancements in Chinese NLP
- Smaller community: Less active development and support
Code comparison
snownlp:
from snownlp import SnowNLP
s = SnowNLP(u'这是一个测试句子')
print(s.words) # 分词
print(s.tags) # 词性标注
print(s.sentiments) # 情感分析
Awesome-Chinese-NLP: (Note: This is a curated list, not a tool, so there's no direct code comparison)
Summary
snownlp is a practical, ready-to-use Chinese NLP library with a focused set of features. It's suitable for quick implementation of basic Chinese NLP tasks. Awesome-Chinese-NLP, on the other hand, is a comprehensive resource list that provides a wider range of tools and research papers for Chinese NLP. It's more suitable for researchers and developers looking to explore various options and stay updated with the latest advancements in the field.
keras implement of transformers for humans
Pros of bert4keras
- Focused specifically on BERT implementation in Keras
- Provides ready-to-use BERT models for Chinese NLP tasks
- Offers more hands-on code examples and implementations
Cons of bert4keras
- Limited to BERT-based models and Keras framework
- Less comprehensive in covering other Chinese NLP resources
- May require more technical expertise to use effectively
Code Comparison
bert4keras example:
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
model = build_transformer_model(config_path, checkpoint_path)
tokenizer = Tokenizer(dict_path)
Awesome-Chinese-NLP doesn't provide direct code examples but offers links to various Chinese NLP tools and resources:
## Chinese Word Segmentation
- [THULAC](http://thulac.thunlp.org/) - An Efficient Lexical Analyzer for Chinese
- [Jieba](https://github.com/fxsjy/jieba) - Python Chinese Word Segmentation Module
While Awesome-Chinese-NLP serves as a comprehensive resource hub for Chinese NLP, bert4keras focuses on providing a specific implementation of BERT for Chinese language tasks. Awesome-Chinese-NLP covers a broader range of topics and tools, making it more suitable for researchers and developers looking for an overview of the field. bert4keras, on the other hand, is more appropriate for those specifically interested in using BERT models with Keras for Chinese NLP projects.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
awesome-chinese-nlp
A curated list of resources for NLP (Natural Language Processing) for Chinese
ä¸æèªç¶è¯è¨å¤çç¸å ³èµæ
å¾çæ¥èªå¤æ¦å¤§å¦é±é¡é¹ææ
Contents å表
1. Chinese NLP Toolkits ä¸æNLPå·¥å ·
-
Toolkits 综åNLPå·¥å ·å
-
Popular NLP Toolkits for English/Multi-Language 常ç¨çè±æææ¯æå¤è¯è¨çNLPå·¥å ·å
-
Chinese Word Segment ä¸æåè¯
-
Information Extraction ä¿¡æ¯æå
-
QA & Chatbot é®çåè天æºå¨äºº
-
Multi-Modal Representation & Retrieval å¤æ¨¡æ表å¾ä¸æ£ç´¢
2. Corpus ä¸æè¯æ
3. Organizations ä¸æNLPå¦æ¯ç»ç»åç«èµ
4. Industry ä¸æNLPåä¸æå¡
5. Learning Materials å¦ä¹ èµæ
Chinese NLP Toolkits ä¸æNLPå·¥å ·
Toolkits 综åNLPå·¥å ·å
-
THULAC ä¸æè¯æ³åæå·¥å ·å by æ¸ å (C++/Java/Python)
-
NLPIR by ä¸ç§é¢ (Java)
-
LTP è¯è¨ææ¯å¹³å° by å工大 (C++) pylyp LTPçpythonå°è£
-
FudanNLP by å¤æ¦ (Java)
-
BaiduLac by ç¾åº¦ Baidu's open-source lexical analysis tool for Chinese, including word segmentation, part-of-speech tagging & named entity recognition.
-
HanLP (Java)
-
FastNLP (Python) ä¸æ¬¾è½»é级ç NLP å¤çå¥ä»¶ã
-
SnowNLP (Python) Python library for processing Chinese text
-
YaYaNLP (Python) 纯pythonç¼åçä¸æèªç¶è¯è¨å¤çå ï¼ååäºâççå¦è¯â
-
å°æNLP (Python) è½»é级ä¸æèªç¶è¯è¨å¤çå·¥å ·
-
DeepNLP (Python) Deep Learning NLP Pipeline implemented on Tensorflow with pretrained Chinese models.
-
chinese_nlp (C++ & Python) Chinese Natural Language Processing tools and examples
-
lightNLP (Python) åºäºPytorchåtorchtextçèªç¶è¯è¨å¤ç深度å¦ä¹ æ¡æ¶
-
Chinese-Annotator (Python) Annotator for Chinese Text Corpus ä¸æææ¬æ æ³¨å·¥å ·
-
Poplar (Typescript) A web-based annotation tool for natural language processing (NLP)
-
Jiagu (Python) Jiagu以BiLSTMç模å为åºç¡ï¼ä½¿ç¨å¤§è§æ¨¡è¯æè®ç»èæãå°æä¾ä¸æåè¯ãè¯æ§æ 注ãå½åå®ä½è¯å«ãæ æåæãç¥è¯å¾è°±å ³ç³»æ½åãå ³é®è¯æ½åãææ¬æè¦ãæ°è¯åç°ç常ç¨èªç¶è¯è¨å¤çåè½ã
-
SmoothNLP (Python & Java) ä¸æ³¨äºå¯è§£éçNLPææ¯
-
FoolNLTK (Python & Java) A Chinese Nature Language Toolkit
Popular NLP Toolkits for English/Multi-Language 常ç¨çè±æææ¯æå¤è¯è¨çNLPå·¥å ·å
-
CoreNLP by Stanford (Java) A Java suite of core NLP tools.
-
Stanza by Stanford (Python) A Python NLP Library for Many Human Languages
-
NLTK (Python) Natural Language Toolkit
-
spaCy (Python) Industrial-Strength Natural Language Processing with a online course
-
textacy (Python) NLP, before and after spaCy
-
OpenNLP (Java) A machine learning based toolkit for the processing of natural language text.
-
gensim (Python) Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora.
-
Kashgari - Simple and powerful NLP framework, build your state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS) and text classification tasks. Includes BERT and word2vec embedding.
Chinese Word Segment ä¸æåè¯
-
Jieba ç»å·´ä¸æåè¯ (Pythonå大éå ¶å®ç¼ç¨è¯è¨è¡ç) åæ好ç Python ä¸æåè¯ç»ä»¶
-
å大ä¸æåè¯å·¥å · (Python) é«å确度ä¸æåè¯å·¥å ·ï¼ç®åæç¨ï¼è·ç°æå¼æºå·¥å ·ç¸æ¯å¤§å¹ æé«äºåè¯çåç¡®çã
-
kcws 深度å¦ä¹ ä¸æåè¯ (Python) BiLSTM+CRFä¸IDCNN+CRF
-
ID-CNN-CWS (Python) Iterated Dilated Convolutions for Chinese Word Segmentation
-
Genius ä¸æåè¯ (Python) Geniusæ¯ä¸ä¸ªå¼æºçpythonä¸æåè¯ç»ä»¶ï¼éç¨ CRF(Conditional Random Field)æ¡ä»¶éæºåºç®æ³ã
-
loso ä¸æåè¯ (Python)
-
yaha "åå"ä¸æåè¯ (Python)
-
ChineseWordSegmentation (Python) Chinese word segmentation algorithm without corpusï¼æ éè¯æåºçä¸æåè¯ï¼
-
Goè¯è¨é«æ§è½åè¯ (Go) Go efficient text segmentation; support english, chinese, japanese and other.
-
Ansjä¸æåè¯ (java) åºäºn-Gram+CRF+HMMçä¸æåè¯çjavaå®ç°
Information Extraction ä¿¡æ¯æå
-
MITIE (C++) library and tools for information extraction
-
Duckling (Haskell) Language, engine, and tooling for expressing, testing, and evaluating composable language rules on input strings.
-
IEPY (Python) IEPY is an open source tool for Information Extraction focused on Relation Extraction.
-
Snorkel A training data creation and management system focused on information extraction
-
Neural Relation Extraction implemented with LSTM in TensorFlow
-
bert-chinese-ner 使ç¨é¢è®ç»è¯è¨æ¨¡åBERTåä¸æNER
-
Information-Extraction-Chinese Chinese Named Entity Recognition with IDCNN/biLSTM+CRF, and Relation Extraction with biGRU+2ATT ä¸æå®ä½è¯å«ä¸å ³ç³»æå
-
Familia ç¾åº¦åºåç A Toolkit for Industrial Topic Modeling
-
Text Classification All kinds of text classificaiton models and more with deep learning. ç¨ç¥ä¹é®çè¯èä½ä¸ºæµè¯æ°æ®ã
-
ComplexEventExtraction ä¸æå¤åäºä»¶çæ¦å¿µä¸æ¾å¼æ¨¡å¼ï¼å æ¬æ¡ä»¶äºä»¶ãå æäºä»¶ã顺æ¿äºä»¶ãå转äºä»¶çäºä»¶æ½åï¼å¹¶å½¢æäºçå¾è°±ã
-
TextRank4ZH ä»ä¸æææ¬ä¸èªå¨æåå ³é®è¯åæè¦
QA & Chatbot é®çåè天æºå¨äºº
-
Rasa NLU (Python) turn natural language into structured data, a Chinese fork at Rasa NLU Chi
-
Rasa Core (Python) machine learning based dialogue engine for conversational software
-
Chatstack A Full Pipeline UI for building Chinese NLU System
-
Snips NLU (Python) Snips NLU is a Python library that allows to parse sentences written in natural language and extracts structured information.
-
DeepPavlov (Python) An open source library for building end-to-end dialog systems and training chatbots.
-
ChatScript Natural Language tool/dialog manager, a rule-based chatbot engine.
-
Chatterbot (Python) ChatterBot is a machine learning, conversational dialog engine for creating chat bots.
-
Chatbot (Python) åºæ¼åéå¹é çæ å¢å¼è天æ©å¨äºº
-
Tipask (PHP) ä¸æ¬¾å¼æ¾æºç çPHPé®çç³»ç»ï¼åºäºLaravelæ¡æ¶å¼åï¼å®¹ææ©å±ï¼å ·æ强大çè´è½½è½åå稳å®æ§ã
-
QuestionAnsweringSystem (Java) ä¸ä¸ªJavaå®ç°ç人æºé®çç³»ç»ï¼è½å¤èªå¨åæé®é¢å¹¶ç»åºåéçæ¡ã
-
QA-Snake (Python) åºäºå¤æç´¢å¼æå深度å¦ä¹ ææ¯çèªå¨é®ç
-
使ç¨TensorFlowå®ç°çSequence to Sequenceçè天æºå¨äººæ¨¡å (Python)
-
使ç¨æ·±åº¦å¦ä¹ ç®æ³å®ç°çä¸æé 读ç解é®çç³»ç» (Python)
-
AnyQ by Baidu 主è¦å å«é¢åFAQéåçé®çç³»ç»æ¡æ¶ãææ¬è¯ä¹å¹é å·¥å ·SimNetã
-
QASystemOnMedicalKG (Python) 以ç¾ç 为ä¸å¿çä¸å®è§æ¨¡å»è¯é¢åç¥è¯å¾è°±ï¼å¹¶ä»¥è¯¥ç¥è¯å¾è°±å®æèªå¨é®çä¸åææå¡ã
-
GPT2-chitchat (Python) ç¨äºä¸æé²èçGPT2模å
-
CDial-GPT (Python) æä¾äºä¸ä¸ªå¤§è§æ¨¡ä¸æ对è¯æ°æ®éï¼å¹¶æä¾äºå¨æ¤æ°æ®éä¸çä¸æ对è¯é¢è®ç»æ¨¡åï¼ä¸æGPT模åï¼
Multi-Modal Representation & Retrieval å¤æ¨¡æ表å¾ä¸æ£ç´¢
- Chinese-CLIP (Python) Chinese-CLIPæ¯ä¸æå¤æ¨¡æå¾æ表å¾é¢è®ç»æ¨¡åãå ¶åºäºOpenAIçCLIP模åç»æï¼å©ç¨å¤§è§æ¨¡ä¸æåçå¾æè¯æå®æé¢è®ç»ï¼ç®åå¼æºäºå¤ä¸ªæ¨¡åè§æ¨¡ï¼åæ¶å ¬å¼äºææ¯æ¥å论æåæ£ç´¢demo
Corpus ä¸æè¯æ
-
åä¸ç¥è¯å¾è°± åä¸é¢åçä¿¡æ¯æ£ç´¢ï¼å½åå®ä½è¯å«ï¼å ³ç³»æ½åï¼åç±»æ æ建ï¼æ°æ®ææ
-
åºäºä¸åè¯æãä¸å模åï¼æ¯å¦BERTãGPTï¼çä¸æé¢è®ç»æ¨¡å ä¸æé¢è®ç»æ¨¡åæ¡æ¶ï¼æ¯æä¸åè¯æãç¼ç å¨ãç®æ ä»»å¡çé¢è®ç»æ¨¡åï¼from RUC and Tencentï¼
-
OpenCLaP å¤é¢åå¼æºä¸æé¢è®ç»è¯è¨æ¨¡åä»åº (from Tsinghua)
-
UDChinese (for training spaCy POS)
-
Tencent AI Lab Embedding Corpus for Chinese Words and Phrases
-
ä¸æGPT2è®ç»ä»£ç å¯ä»¥åè¯ï¼æ°é»ï¼å°è¯´ï¼ææ¯è®ç»éç¨è¯è¨æ¨¡åã
-
ä¸æè¯è¨ç解æµè¯åºåChineseGLUE å æ¬ä»£è¡¨æ§çæ°æ®éãåºå(é¢è®ç»)模åãè¯æåºãæè¡æ¦ã
-
ä¸åæ°ååå ¸æ°æ®åº å æ¬æåè¯ï¼æè¯ï¼è¯è¯ï¼æ±åã
-
Synonyms:ä¸æè¿ä¹è¯å·¥å ·å åºäºç»´åºç¾ç§ä¸æåword2vecè®ç»çè¿ä¹è¯åºï¼å°è£ 为pythonå æ件ã
-
Chinese_conversation_sentiment A Chinese sentiment dataset may be useful for sentiment analysis.
-
ä¸æçªåäºä»¶è¯æåº Chinese Emergency Corpus
-
dgk_lost_conv ä¸æ对ç½è¯æ chinese conversation corpus
-
ç¨äºè®ç»ä¸è±æ对è¯ç³»ç»çè¯æåº Datasets for Training Chatbot System
-
ä¸å½è¡å¸å ¬åä¿¡æ¯ç¬å éè¿pythonèæ¬ä»å·¨æ½®ç½ç»çæå¡å¨è·åä¸å½è¡å¸ï¼sz,shï¼çå ¬å(ä¸å¸å ¬å¸åç管æºæ)
-
tushareè´¢ç»æ°æ®æ¥å£ TuShareæ¯ä¸ä¸ªå è´¹ãå¼æºçpythonè´¢ç»æ°æ®æ¥å£å ã
-
éèææ¬æ°æ®é SmoothNLP éèææ¬æ°æ®é(å ¬å¼) Public Financial Datasets for NLP Researches
-
ä¿é©è¡ä¸è¯æåº [52nlpä»ç»Blog] OpenData in insurance area for Machine Learning Tasks
-
æå ¨ä¸åå¤è¯è¯æ°æ®åº åå®ä¸¤æè¿ä¸ä¸ååå¤è¯äºº, æ¥è¿5.5ä¸é¦åè¯å 26ä¸å®è¯. 两å®æ¶æ1564ä½è¯äººï¼21050é¦è¯ã
-
ä¸æè¯æå°æ°æ® å å«äºä¸æå½åå®ä½è¯å«ãä¸æå ³ç³»è¯å«ãä¸æé 读ç解çä¸äºå°éæ°æ®
-
Chinese-Literature-NER-RE-Dataset A Discourse-Level Named Entity Recognition and Relation Extraction Dataset for Chinese Literature Text
-
ChineseTextualInference ä¸æææ¬æ¨æ项ç®,å æ¬88ä¸ææ¬è´å«ä¸æææ¬è´å«æ°æ®éçç¿»è¯ä¸æ建,åºäºæ·±åº¦å¦ä¹ çææ¬è´å«å¤å®æ¨¡åæ建.
-
大è§æ¨¡ä¸æèªç¶è¯è¨å¤çè¯æ ç»´åºç¾ç§(wiki2019zh),æ°é»è¯æ(news2016zh),ç¾ç§é®ç(baike2018qa)
-
ä¸æ人åè¯æåº ä¸æå§å,å§æ°,åå,称å¼,æ¥æ¬äººå,ç¿»è¯äººå,è±æ人åã
-
å ¬å¸åãæºæåè¯æåº å ¬å¸ç®ç§°,缩å,åçè¯,ä¼ä¸åã
-
ä¸æææè¯è¯åº ææè¯è¿æ»¤çå ç§å®ç°+æ1wè¯ææè¯åº
-
ä¸æç®ç§°è¯åº A corpus of Chinese abbreviation, including negative full forms.
-
ä¸ææ°æ®é¢å¤çææ ä¸æåè¯è¯å ¸åä¸æåç¨è¯
-
SentiBridge: ä¸æå®ä½æ æç¥è¯åº å»ç»äººä»¬å¦ä½æè¿°æ个å®ä½ï¼å å«æ°é»ãæ 游ãé¤é¥®ï¼å ±è®¡30ä¸å¯¹ã
-
OpenCorpus A collection of freely available (Chinese) corpora.
-
ChineseNlpCorpus æ æ/è§ç¹/è¯è®º å¾åæ§åæï¼ä¸æå½åå®ä½è¯å«ï¼æ¨èç³»ç»
-
FinancialDatasets SmoothNLP éèææ¬æ°æ®é(å ¬å¼) Public Financial Datasets for NLP Researches Only
-
People's Daily & Children's Fairy Tale PD&CFT: A Chinese Reading Comprehension Dataset
-
ä¸æç»´åº23ä¸é«è´¨éè¯æ¡-æ´æ°è³23å¹´7æ-å·²è¿æ»¤æææäºè®®æ§ä¿¡æ¯
Organizations ä¸æNLPå¦æ¯ç»ç»åç«èµ
-
å¦é¨å¤§å¦æºè½ç§å¦ä¸ææ¯ç³»èªç¶è¯è¨å¤çå®éªå®¤
-
NLP Conference Calender Main conferences, journals, workshops and shared tasks in NLP community.
-
2017 AI-Challenger å¾åä¸ææè¿° ç¨ä¸å¥è¯æè¿°ç»å®å¾åä¸ç主è¦ä¿¡æ¯ï¼ææä¸æè¯å¢ä¸çå¾åç解é®é¢ã
-
2017 AI-Challenger è±ä¸æºå¨ææ¬ç¿»è¯ ç¨å¤§è§æ¨¡çæ°æ®ï¼æåè±ä¸ææ¬æºå¨ç¿»è¯æ¨¡åçè½åã
-
2017 ç¥ä¹çå±±æ¯æºå¨å¦ä¹ ææèµ æ ¹æ®ç¥ä¹ç»åºçé®é¢åè¯é¢æ ç¾çç»å®å ³ç³»çè®ç»æ°æ®ï¼è®ç»åºå¯¹æªæ 注æ°æ®èªå¨æ 注ç模åã
-
2018 å¼æ¾é¢åçä¸æé®çä»»å¡ å¯¹äºç»å®çä¸å¥ä¸æé®é¢ï¼é®çç³»ç»ä»ç»å®ç¥è¯åºä¸éæ©è¥å¹²å®ä½æå±æ§å¼ä½ä¸ºè¯¥é®é¢ççæ¡ã
-
2018 å¾®ä¼é¶è¡æºè½å®¢æé®å¥å¹é å¤§èµ é对ä¸æççå®å®¢æè¯æï¼è¿è¡é®å¥æå¾å¹é ï¼ç»å®ä¸¤ä¸ªè¯å¥ï¼å¤å®ä¸¤è æå¾æ¯å¦ç¸è¿ã
Industry ä¸æNLPåä¸æå¡
-
å为äºNLP é对åç±»ä¼ä¸åå¼åè æä¾çç¨äºææ¬åæåææçäºæå¡ï¼æ¨å¨å¸®å©ç¨æ·é«æçå¤çææ¬
-
ç¾åº¦äºNLP æä¾ä¸çé¢å çèªç¶è¯è¨å¤çææ¯ï¼æä¾ä¼è´¨ææ¬å¤çåç解ææ¯
-
é¿éäºNLP 为åç±»ä¼ä¸åå¼åè æä¾çç¨äºææ¬åæåææçæ ¸å¿å·¥å ·
-
è ¾è®¯äºNLP åºäºå¹¶è¡è®¡ç®ãåå¸å¼ç¬è«ç³»ç»ï¼ç»åç¬ç¹çè¯ä¹åæææ¯ï¼ä¸ç«æ»¡è¶³NLPã转ç ãæ½åãæ°æ®æåçéæ±
-
讯é£å¼æ¾å¹³å° 以è¯é³äº¤äºä¸ºæ ¸å¿ç人工æºè½å¼æ¾å¹³å°
-
æçå®éªå®¤ åè¯åè¯æ§æ 注
-
ç»æ£®æ°æ® ä¸æµ·ç»æ£®æ°æ®ç§ææéå ¬å¸ï¼ä¸æ³¨ä¸æè¯ä¹åæææ¯
-
äºåç§æ NLPå·¥å ·å ãç¥è¯å¾è°±ãææ¬ææã对è¯ç³»ç»ãèæ åæç
-
æºè¨ç§æ ä¸æ³¨äºæ·±åº¦å¦ä¹ åç¥è¯å¾è°±ææ¯çªç ´ç人工æºè½å ¬å¸
-
追ä¸ç§æ 主æ»æ·±åº¦å¦ä¹ åèªç¶è¯è¨å¤ç
Learning Materials å¦ä¹ èµæ
-
Stanford CS224n Natural Language Processing with Deep Learning 2017
-
[Course materials for Georgia Tech CS 4650 and 7650, "Natural Language"] (https://github.com/jacobeisenstein/gt-nlp-class)
-
Speech and Language Processing by Dan Jurafsky and James H. Martin
-
ææ¬å¤çå®è·µè¯¾èµæ ææ¬å¤çå®è·µè¯¾èµæï¼å å«ææ¬ç¹å¾æåï¼TF-IDFï¼ï¼ææ¬åç±»ï¼ææ¬èç±»ï¼word2vecè®ç»è¯åéååä¹è¯è¯æä¸æè¯è¯ç¸ä¼¼åº¦è®¡ç®ãææ¡£èªå¨æè¦ï¼ä¿¡æ¯æ½åï¼æ æåæä¸è§ç¹ææçå®éªã
-
nlp_tasks Natural Language Processing Tasks and Selected References
-
NLPç ç©¶å ¥é¨ä¹é fromæ¸ ååç¥è¿èå¸
-
Chinese NLP Shared tasks, datasets and state-of-the-art results for Chinese Natural Language Processing
Top Related Projects
百度NLP:分词,词性标注,命名实体识别,词重要性
结巴中文分词
中文分词 词性标注 命名实体识别 依存句法分析 成分句法分析 语义依存分析 语义角色标注 指代消解 风格转换 语义相似度 新词发现 关键词短语提取 自动摘要 文本分类聚类 拼音简繁转换 自然语言处理
Python library for processing Chinese text
keras implement of transformers for humans
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot