Top Related Projects
VIP cheatsheets for Stanford's CS 229 Machine Learning
⛔️ DEPRECATED – See https://github.com/ageron/handson-ml3 instead.
The "Python Machine Learning (1st edition)" book code repository and info resource
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
A curated list of awesome Machine Learning frameworks, libraries and software.
📺 Discover the latest machine learning / AI courses on YouTube.
Quick Overview
The "Coursera-ML-AndrewNg-Notes" repository is a comprehensive collection of notes and resources for Andrew Ng's Machine Learning course on Coursera. It provides Chinese translations of course materials, including lecture slides, programming assignments, and additional explanations to help learners better understand the concepts.
Pros
- Offers detailed Chinese translations of course materials, making it accessible to Chinese-speaking learners
- Includes additional explanations and insights to supplement the original course content
- Provides organized and well-structured notes for easy reference and study
- Contains programming assignments and solutions to help reinforce learning
Cons
- Primarily focused on Chinese translations, which may limit its usefulness for non-Chinese speakers
- May not always be up-to-date with the latest course revisions or updates
- Potential copyright concerns as it contains translated course materials
- Reliance on external resources (e.g., images) may lead to broken links over time
Code Examples
This repository is not a code library but rather a collection of notes and resources. Therefore, there are no specific code examples to showcase.
Getting Started
As this is not a code library, there are no specific getting started instructions. However, users can access the repository by visiting the GitHub page and navigating through the folders to find relevant notes and resources for each week of the course.
Competitor Comparisons
VIP cheatsheets for Stanford's CS 229 Machine Learning
Pros of stanford-cs-229-machine-learning
- Offers concise, visually appealing cheat sheets for quick reference
- Covers a broader range of advanced ML topics from Stanford's CS229 course
- Available in multiple languages, making it accessible to a wider audience
Cons of stanford-cs-229-machine-learning
- Lacks detailed explanations and in-depth code examples
- Does not provide comprehensive lecture notes or video content
- May be more challenging for beginners due to its condensed format
Code Comparison
stanford-cs-229-machine-learning:
# No specific code examples provided in the cheat sheets
Coursera-ML-AndrewNg-Notes:
function [J, grad] = costFunction(theta, X, y)
m = length(y);
J = (-1/m) * sum(y.*log(sigmoid(X*theta)) + (1-y).*log(1-sigmoid(X*theta)));
grad = (1/m) * X' * (sigmoid(X*theta) - y);
end
The Coursera-ML-AndrewNg-Notes repository provides more detailed code examples, primarily in MATLAB/Octave, while stanford-cs-229-machine-learning focuses on concise theoretical concepts without extensive code samples.
⛔️ DEPRECATED – See https://github.com/ageron/handson-ml3 instead.
Pros of handson-ml
- More comprehensive coverage of modern machine learning techniques and libraries (e.g., TensorFlow, Scikit-learn)
- Practical, hands-on approach with numerous code examples and Jupyter notebooks
- Regularly updated to reflect the latest developments in ML and deep learning
Cons of handson-ml
- Less focus on mathematical foundations and theoretical concepts
- May be more challenging for absolute beginners in machine learning
- Requires familiarity with Python programming
Code Comparison
handson-ml (using Scikit-learn):
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
Coursera-ML-AndrewNg-Notes (using Octave/MATLAB):
theta = zeros(n, 1);
for iter = 1:num_iters
theta = theta - alpha * (1/m) * X' * (X * theta - y);
end
predictions = X * theta;
The handson-ml repository uses modern Python libraries, while Coursera-ML-AndrewNg-Notes focuses on implementing algorithms from scratch in Octave/MATLAB. This difference reflects the practical vs. theoretical approaches of the two resources.
The "Python Machine Learning (1st edition)" book code repository and info resource
Pros of python-machine-learning-book
- More comprehensive coverage of Python-specific machine learning implementations
- Includes practical examples and code snippets for immediate application
- Regularly updated with modern machine learning techniques and libraries
Cons of python-machine-learning-book
- Less focus on theoretical foundations compared to Coursera-ML-AndrewNg-Notes
- May be more challenging for absolute beginners in machine learning
- Doesn't cover some classical algorithms in as much depth
Code Comparison
Coursera-ML-AndrewNg-Notes (MATLAB/Octave):
theta = zeros(n, 1);
for iter = 1:num_iters
h = X * theta;
theta = theta - alpha * (1/m) * X' * (h - y);
end
python-machine-learning-book (Python):
def gradient_descent(X, y, theta, alpha, num_iters):
m = len(y)
for _ in range(num_iters):
h = X.dot(theta)
theta -= alpha * (1/m) * X.T.dot(h - y)
return theta
Both repositories provide valuable resources for learning machine learning, but they cater to different audiences and programming languages. Coursera-ML-AndrewNg-Notes focuses on theoretical foundations using MATLAB/Octave, while python-machine-learning-book emphasizes practical implementation in Python with modern libraries and techniques.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Pros of ML-From-Scratch
- Implements algorithms from scratch in Python, providing deeper understanding of ML concepts
- Covers a wide range of ML algorithms, including deep learning and reinforcement learning
- Includes practical examples and visualizations for each algorithm
Cons of ML-From-Scratch
- Less structured learning path compared to Coursera-ML-AndrewNg-Notes
- May lack detailed explanations and theoretical background provided in Andrew Ng's course
- Not directly tied to a comprehensive course curriculum
Code Comparison
ML-From-Scratch (Neural Network implementation):
class NeuralNetwork():
def __init__(self, n_hidden):
self.n_hidden = n_hidden
self.network = {}
def _initialize_weights(self, X, y):
n_samples, n_features = X.shape
_, n_outputs = y.shape
# Initialize weights between input layer and hidden layer
self.network["W1"] = np.random.randn(n_features, self.n_hidden)
self.network["b1"] = np.zeros((1, self.n_hidden))
Coursera-ML-AndrewNg-Notes (Neural Network implementation in MATLAB/Octave):
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
A curated list of awesome Machine Learning frameworks, libraries and software.
Pros of awesome-machine-learning
- Comprehensive resource covering a wide range of ML topics and tools
- Regularly updated with contributions from the community
- Includes links to libraries, frameworks, and resources across multiple programming languages
Cons of awesome-machine-learning
- Less structured learning path compared to Coursera-ML-AndrewNg-Notes
- May be overwhelming for beginners due to the vast amount of information
- Lacks in-depth explanations and practical exercises found in a course format
Code comparison
While awesome-machine-learning doesn't provide direct code examples, it links to various libraries and frameworks. Coursera-ML-AndrewNg-Notes includes code snippets from the course. Here's a brief comparison:
awesome-machine-learning (linked resource example):
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
Coursera-ML-AndrewNg-Notes (course implementation):
function [theta] = gradientDescent(X, y, theta, alpha, num_iters)
m = length(y);
for iter = 1:num_iters
theta = theta - alpha * (1/m) * X' * (X * theta - y);
end
end
The awesome-machine-learning repository serves as a curated list of resources, while Coursera-ML-AndrewNg-Notes provides specific implementations and explanations from Andrew Ng's Machine Learning course.
📺 Discover the latest machine learning / AI courses on YouTube.
Pros of ML-YouTube-Courses
- Covers a wider range of ML topics and courses from multiple sources
- Regularly updated with new content and courses
- Includes links to free YouTube videos, making it accessible to all learners
Cons of ML-YouTube-Courses
- Less structured and cohesive compared to a single course format
- May lack the depth and consistency of a curated course like Andrew Ng's
- No direct association with a renowned institution or instructor
Code Comparison
ML-YouTube-Courses doesn't provide code samples directly, as it's a curated list of courses. Coursera-ML-AndrewNg-Notes includes code examples from the course, such as:
function J = computeCost(X, y, theta)
m = length(y);
J = 0;
J = (1/(2*m)) * sum(((X * theta) - y).^2);
end
Summary
ML-YouTube-Courses offers a diverse range of free ML resources from various sources, making it suitable for learners seeking a broad overview of ML topics. Coursera-ML-AndrewNg-Notes provides a more focused and structured approach, following a single course curriculum with associated code examples and notes. The choice between the two depends on the learner's preferences and learning style.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
æ¯å¦ç¦å¤§å¦2014ï¼å´æ©è¾¾ï¼æºå¨å¦ä¹ æç¨ä¸æç¬è®°
课ç¨å°åï¼https://www.coursera.org/course/ml
Machine Learning(æºå¨å¦ä¹ )æ¯ç 究计ç®æºææ ·æ¨¡ææå®ç°äººç±»çå¦ä¹ è¡ä¸ºï¼ä»¥è·åæ°çç¥è¯ææè½ï¼éæ°ç»ç»å·²æçç¥è¯ç»æ使ä¹ä¸ææ¹åèªèº«çæ§è½ãå®æ¯äººå·¥æºè½çæ ¸å¿ï¼æ¯ä½¿è®¡ç®æºå ·ææºè½çæ ¹æ¬éå¾ï¼å ¶åºç¨éå人工æºè½çå个é¢åï¼å®ä¸»è¦ä½¿ç¨å½çº³ã综åèä¸æ¯æ¼è¯ãå¨è¿å»çåå¹´ä¸ï¼æºå¨å¦ä¹ 帮å©æ们èªå¨é©¾é©¶æ±½è½¦ï¼ææçè¯é³è¯å«ï¼ææçç½ç»æç´¢ï¼å¹¶æ大å°æé«äºäººç±»åºå ç»ç认è¯ãæºå¨å¦ä¹ æ¯å½ä»é常æ®éï¼ä½ å¯è½ä¼ä½¿ç¨è¿ä¸å¤©å ååèä¸èªç¥ãå¾å¤ç 究è ä¹è®¤ä¸ºè¿æ¯æ好ç人工æºè½çåå¾æ¹å¼ãå¨æ¬è¯¾ä¸ï¼æ¨å°å¦ä¹ æææçæºå¨å¦ä¹ ææ¯ï¼å¹¶è·å¾å®è·µï¼è®©å®ä»¬ä¸ºèªå·±çå·¥ä½ãæ´éè¦çæ¯ï¼ä½ ä¼ä¸ä» å¾å°ç论åºç¡çå¦ä¹ ï¼èä¸è·å¾é£äºéè¦å¿«éå强大çåºç¨ææ¯è§£å³é®é¢çå®ç¨ææ¯ãæåï¼ä½ ä¼å¦å°ä¸äºç¡ è°·å©ç¨æºå¨å¦ä¹ å人工æºè½çæä½³å®è·µåæ°ã
æ¬è¯¾ç¨æä¾äºä¸ä¸ªå¹¿æ³çä»ç»æºå¨å¦ä¹ ãæ°æ®ææãç»è®¡æ¨¡å¼è¯å«ç课ç¨ã主é¢å æ¬ï¼
ï¼ä¸ï¼çç£å¦ä¹ ï¼åæ°/éåæ°ç®æ³ï¼æ¯æåéæºï¼æ ¸å½æ°ï¼ç¥ç»ç½ç»ï¼ã
ï¼äºï¼æ çç£å¦ä¹ ï¼èç±»ï¼éç»´ï¼æ¨èç³»ç»ï¼æ·±å ¥å¦ä¹ æ¨èï¼ã
ï¼ä¸ï¼å¨æºå¨å¦ä¹ çæä½³å®è·µï¼åå·®/æ¹å·®ç论ï¼å¨æºå¨å¦ä¹ å人工æºè½åæ°è¿ç¨ï¼ãæ¬è¯¾ç¨è¿å°ä½¿ç¨å¤§éçæ¡ä¾ç 究ï¼æ¨è¿å°å¦ä¹ å¦ä½è¿ç¨å¦ä¹ ç®æ³æ建æºè½æºå¨äººï¼æç¥ï¼æ§å¶ï¼ï¼ææ¬çç解ï¼Webæç´¢ï¼ååå¾é®ä»¶ï¼ï¼è®¡ç®æºè§è§ï¼å»çä¿¡æ¯ï¼é³é¢ï¼æ°æ®ææï¼åå ¶ä»é¢åã
æ¬è¯¾ç¨éè¦10å¨å ±18è课ï¼ç¸å¯¹ä»¥åçæºå¨å¦ä¹ è§é¢ï¼è¿ä¸ªè§é¢æ´å æ¸ æ°ï¼èä¸æ¯è¯¾é½æppt课件ï¼æ¨èå¦ä¹ ã
æ¬äºº2014å¹´ä¸åå¹´å¼å§ç¿»è¯æ¬è¯¾ç¨åå¹ï¼å¹¶åäºè¯¾ç¨çä¸æç¬è®°ãç¬è®°è¢«ä¸è½½äºå ä¸æ¬¡ï¼åºè¯¥å¸®å©äºä¸å°äººï¼ä¹æå¾å¤äººä¸ç´å¨å¸®å©æï¼ç°å¨ææç¬è®°çwordå稿åmarkdownå稿å享ç»å¤§å®¶ã
markdownçç¬è®°å课ç¨ä¸è±æåå¹æå°æ¾å¨githubï¼å¸æ大家è½ç»§ç»å®åã为æ¹ä¾¿æ°å¦å ¬å¼çå¨çº¿æ¾ç¤ºï¼å¨çº¿è§ççæ¯htmlæ件ï¼å ¬å¼å·²ç»è¢«è½¬ä¸ºå¾çï¼å ¬å¼æºç å¨markdownæ件ã
æåæ³å¯¹åä½æåè¯´ï¼ èµ äººç«ç°ï¼ææä½é¦ï¼ å¨äººå·¥æºè½çéè·¯ä¸ï¼ä½ ä¸æ¯ä¸ä¸ªäººå¨ææï¼
é»æµ·å¹¿
2018-3-26 å¤
å¾®ä¿¡å ¬ä¼å·ï¼æºå¨å¦ä¹ åå¦è æçç¥ä¹
åèï¼
-
https://www.coursera.org/course/ml æºå¨å¦ä¹ å ¬å¼è¯¾
-
https://mooc.guokr.com/note/12/ å°å°äºº_V ç个人ç¬è®°
-
ãç»è®¡å¦ä¹ æ¹æ³ãæèª
-
ãæºå¨å¦ä¹ 课ãé¹å
å¤æ³¨ï¼å´æ©è¾¾èå¸ç深度å¦ä¹ 课ï¼deepLearning.aiï¼çç¬è®°å°åï¼https://github.com/fengdu78/deeplearning_ai_books
æ件夹说æï¼
docxï¼ç¬è®°çwordçæ¬
markdownï¼ç¬è®°çmarkdownçæ¬
htmlï¼ç¬è®°çhtmlçæ¬
imagesï¼ç¬è®°çå¾ç
pptï¼è¯¾ç¨çåç课件
srtï¼è¯¾ç¨çä¸è±æåå¹ï¼mp4æ件éè¦å¨ç¾åº¦äºä¸è½½ï¼å¤§å®¶å¯ä»¥ç¨è®°äºæ¬æè åå¹ç¼è¾è½¯ä»¶æ¥ç¼è¾åå¹ï¼å ±åå®åã
ç¾åº¦äºé¾æ¥ï¼https://pan.baidu.com/s/1h8QjqBlOm0Exh7orm9teMQ å¯ç ï¼d3weï¼ä¸è½½å解åï¼
codeï¼è¯¾ç¨çpython代ç
æºå¨å¦ä¹ 课ç¨è§é¢ï¼https://www.bilibili.com/video/BV1W34y1i7xK
ç¬è®°pdfçæ¬ä¸è½½ ï¼è§Githubæ ¹ç®å½ã
æºå¨å¦ä¹ qq群ï¼955171419ï¼æ们æ13个群ï¼å è¿ä¸ä¸ªå°±ä¸éè¦å äºï¼
æºå¨å¦ä¹ æç¨ä¸æç¬è®°ç®å½
ä¸ã å¼è¨(Introduction)
1.1 欢è¿
1.2 æºå¨å¦ä¹ æ¯ä»ä¹ï¼
1.3 çç£å¦ä¹
1.4 æ çç£å¦ä¹
äºãååé线æ§åå½(Linear Regression with One Variable)
2.1 模å表示
2.2 代价å½æ°
2.3 代价å½æ°çç´è§ç解I
2.4 代价å½æ°çç´è§ç解II
2.5 梯度ä¸é
2.6 梯度ä¸éçç´è§ç解
2.7 梯度ä¸éç线æ§åå½
2.8 æ¥ä¸æ¥çå 容
ä¸ã线æ§ä»£æ°å顾(Linear Algebra Review)
3.1 ç©éµååé
3.2 å æ³åæ éä¹æ³
3.3 ç©éµåéä¹æ³
3.4 ç©éµä¹æ³
3.5 ç©éµä¹æ³çæ§è´¨
3.6 éã转置
åãå¤åé线æ§åå½(Linear Regression with Multiple Variables)
4.1 å¤ç»´ç¹å¾
4.2 å¤åé梯度ä¸é
4.3 梯度ä¸éæ³å®è·µ1-ç¹å¾ç¼©æ¾
4.4 梯度ä¸éæ³å®è·µ2-å¦ä¹ ç
4.5 ç¹å¾åå¤é¡¹å¼åå½
4.6 æ£è§æ¹ç¨
4.7 æ£è§æ¹ç¨åä¸å¯éæ§ï¼éä¿®ï¼
äºãOctaveæç¨(Octave Tutorial)
5.1 åºæ¬æä½
5.2 移å¨æ°æ®
5.3 计ç®æ°æ®
5.4 ç»å¾æ°æ®
5.5 æ§å¶è¯å¥ï¼forï¼whileï¼ifè¯å¥
5.6 åéå 88
5.7 å·¥ä½åæ交çç¼ç¨ç»ä¹
å ãé»è¾åå½(Logistic Regression)
6.1 åç±»é®é¢
6.2 å说表示
6.3 å¤å®è¾¹ç
6.4 代价å½æ°
6.5 ç®åçææ¬å½æ°å梯度ä¸é
6.6 é«çº§ä¼å
6.7 å¤ç±»å«åç±»ï¼ä¸å¯¹å¤
ä¸ãæ£åå(Regularization)
7.1 è¿æåçé®é¢
7.2 代价å½æ°
7.3 æ£åå线æ§åå½
7.4 æ£ååçé»è¾åå½æ¨¡å
ç¬¬å «ãç¥ç»ç½ç»ï¼è¡¨è¿°(Neural Networks: Representation)
8.1 é线æ§å设
8.2 ç¥ç»å å大è
8.3 模å表示1
8.4 模å表示2
8.5 æ ·æ¬åç´è§ç解1
8.6 æ ·æ¬åç´è§ç解II
8.7 å¤ç±»åç±»
ä¹ãç¥ç»ç½ç»çå¦ä¹ (Neural Networks: Learning)
9.1 代价å½æ°
9.2 ååä¼ æç®æ³
9.3 ååä¼ æç®æ³çç´è§ç解
9.4 å®ç°æ³¨æï¼å±å¼åæ°
9.5 梯度æ£éª
9.6 éæºåå§å
9.7 综åèµ·æ¥
9.8 èªä¸»é©¾é©¶
åãåºç¨æºå¨å¦ä¹ ç建议(Advice for Applying Machine Learning)
10.1 å³å®ä¸ä¸æ¥åä»ä¹
10.2 è¯ä¼°ä¸ä¸ªå设
10.3 模åéæ©å交åéªè¯é
10.4 è¯æåå·®åæ¹å·®
10.5 æ£ååååå·®/æ¹å·®
10.6 å¦ä¹ æ²çº¿
10.7 å³å®ä¸ä¸æ¥åä»ä¹
åä¸ãæºå¨å¦ä¹ ç³»ç»ç设计(Machine Learning System Design)
11.1 é¦å è¦åä»ä¹
11.2 误差åæ
11.3 ç±»åæç误差度é
11.4 æ¥åçåæ¥å ¨çä¹é´çæè¡¡
11.5 æºå¨å¦ä¹ çæ°æ®
åäºãæ¯æåéæº(Support Vector Machines)
12.1 ä¼åç®æ
12.2 大边ççç´è§ç解
12.3 æ°å¦èåç大边çåç±»ï¼éä¿®ï¼
12.4 æ ¸å½æ°1
12.5 æ ¸å½æ°2
12.6 使ç¨æ¯æåéæº
åä¸ãèç±»(Clustering)
13.1 æ çç£å¦ä¹ ï¼ç®ä»
13.2 K-åå¼ç®æ³
13.3 ä¼åç®æ
13.4 éæºåå§å
13.5 éæ©èç±»æ°
ååãéç»´(Dimensionality Reduction)
14.1 å¨æºä¸ï¼æ°æ®å缩
14.2 å¨æºäºï¼æ°æ®å¯è§å
14.3 主æååæé®é¢
14.4 主æååæç®æ³
14.5 éæ©ä¸»æåçæ°é
14.6 é建çå缩表示
14.7 主æååææ³çåºç¨å»ºè®®
åäºãå¼å¸¸æ£æµ(Anomaly Detection)
15.1 é®é¢çå¨æº
15.2 é«æ¯åå¸
15.3 ç®æ³
15.4 å¼ååè¯ä»·ä¸ä¸ªå¼å¸¸æ£æµç³»ç»
15.5 å¼å¸¸æ£æµä¸çç£å¦ä¹ 对æ¯
15.6 éæ©ç¹å¾
15.7 å¤å é«æ¯åå¸ï¼éä¿®ï¼
15.8 使ç¨å¤å é«æ¯åå¸è¿è¡å¼å¸¸æ£æµï¼éä¿®ï¼
åå ãæ¨èç³»ç»(Recommender Systems)
16.1 é®é¢å½¢å¼å
16.2 åºäºå 容çæ¨èç³»ç»
16.3 ååè¿æ»¤
16.4 ååè¿æ»¤ç®æ³
16.5 åéåï¼ä½ç§©ç©éµå解
16.6 æ¨è¡å·¥ä½ä¸çç»èï¼åå¼å½ä¸å
åä¸ã大è§æ¨¡æºå¨å¦ä¹ (Large Scale Machine Learning)
17.1 大åæ°æ®éçå¦ä¹
17.2 éæºæ¢¯åº¦ä¸éæ³
17.3 å°æ¹é梯度ä¸é
17.4 éæºæ¢¯åº¦ä¸éæ¶æ
17.5 å¨çº¿å¦ä¹
17.6 æ å°åç®åæ°æ®å¹¶è¡
åå «ãåºç¨å®ä¾ï¼å¾çæåè¯å«(Application Example: Photo OCR)
18.1 é®é¢æè¿°åæµç¨å¾
18.2 æ»å¨çªå£
18.3 è·å大éæ°æ®å人工æ°æ®
18.4 ä¸éåæï¼åªé¨å管éçæ¥ä¸å»å
åä¹ãæ»ç»(Conclusion)
19.1 æ»ç»åè´è°¢
æºå¨å¦ä¹ qq群ï¼955171419ï¼æ们æ13个群ï¼å è¿ä¸ä¸ªå°±ä¸éè¦å äºï¼
Top Related Projects
VIP cheatsheets for Stanford's CS 229 Machine Learning
⛔️ DEPRECATED – See https://github.com/ageron/handson-ml3 instead.
The "Python Machine Learning (1st edition)" book code repository and info resource
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
A curated list of awesome Machine Learning frameworks, libraries and software.
📺 Discover the latest machine learning / AI courses on YouTube.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot