Quick Overview
Jupyter Docker Stacks is a collection of ready-to-run Docker images containing Jupyter applications and interactive computing tools. These images are designed to be used by data scientists, researchers, and educators for various scientific computing and data analysis tasks. The project provides a range of pre-configured environments, from basic Jupyter Notebook setups to more specialized stacks for specific domains.
Pros
- Ready-to-use environments with pre-installed libraries and tools
- Consistent and reproducible development environments across different machines
- Easy customization and extension of existing images
- Regular updates and maintenance by the Jupyter community
Cons
- Large image sizes, which can be resource-intensive
- Potential learning curve for users new to Docker
- May require additional configuration for specific use cases or enterprise environments
- Limited control over package versions compared to manual setup
Getting Started
To get started with Jupyter Docker Stacks, follow these steps:
- Install Docker on your system.
- Choose an image from the available stacks (e.g., jupyter/datascience-notebook).
- Run the container using the following command:
docker run -p 8888:8888 jupyter/datascience-notebook
- Open the provided URL in your browser to access the Jupyter environment.
For more advanced usage and customization options, refer to the project's documentation on GitHub.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
Jupyter Docker Stacks
Jupyter Docker Stacks are a set of ready-to-run Docker images containing Jupyter applications and interactive computing tools. You can use a stack image to do any of the following (and more):
- Start a personal Jupyter Server with the JupyterLab frontend (default)
- Run JupyterLab for a team using JupyterHub
- Start a personal Jupyter Server with the Jupyter Notebook frontend in a local Docker container
- Write your own project Dockerfile
Quick Start
You can try a relatively recent build of the quay.io/jupyter/base-notebook image on mybinder.org. Otherwise, the examples below may help you get started if you have Docker installed, know which Docker image you want to use, and want to launch a single Jupyter Application in a container.
The User Guide on ReadTheDocs describes additional uses and features in detail.
Since `2023-10-20` our images are only pushed to `Quay.io` registry.
Older images are available on Docker Hub, but they will no longer be updated.
Example 1
This command pulls the jupyter/scipy-notebook
image tagged 2024-11-19
from Quay.io if it is not already present on the local host.
It then starts a container running a Jupyter Server with the JupyterLab frontend and exposes the container's internal port 8888
to port 10000
of the host machine:
docker run -p 10000:8888 quay.io/jupyter/scipy-notebook:2024-11-19
You can modify the port on which the container's port is exposed by changing the value of the -p
option to -p 8888:8888
.
Visiting http://<hostname>:10000/?token=<token>
in a browser loads JupyterLab,
where:
- The
hostname
is the name of the computer running Docker - The
token
is the secret token printed in the console.
The container remains intact for restart after the Server exits.
Example 2
This command pulls the jupyter/datascience-notebook
image tagged 2024-11-19
from Quay.io if it is not already present on the local host.
It then starts an ephemeral container running a Jupyter Server with the JupyterLab frontend and exposes the server on host port 10000.
docker run -it --rm -p 10000:8888 -v "${PWD}":/home/jovyan/work quay.io/jupyter/datascience-notebook:2024-11-19
The use of the -v
flag in the command mounts the current working directory on the host (${PWD}
in the example command) as /home/jovyan/work
in the container.
The server logs appear in the terminal.
Visiting http://<hostname>:10000/?token=<token>
in a browser loads JupyterLab.
Due to the usage of the --rm
flag
Docker automatically cleans up the container and removes the file system when the container exits,
but any changes made to the ~/work
directory and its files in the container will remain intact on the host.
The -i
flag keeps the container's STDIN
open, and lets you send input to the container through standard input.
The -t
flag attaches a pseudo-TTY to the container.
By default, [jupyter's root_dir](https://jupyter-server.readthedocs.io/en/latest/other/full-config.html) is `/home/jovyan`.
So, new notebooks will be saved there, unless you change the directory in the file browser.
To change the default directory, you must specify `ServerApp.root_dir` by adding this line to the previous command: `start-notebook.py --ServerApp.root_dir=/home/jovyan/work`.
Choosing Jupyter frontend
JupyterLab is the default for all the Jupyter Docker Stacks images.
It is still possible to switch back to Jupyter Notebook (or to launch a different startup command).
You can achieve this by passing the environment variable DOCKER_STACKS_JUPYTER_CMD=notebook
(or any other valid jupyter
subcommand) at container startup;
more information is available in the documentation.
Resources
- Documentation on ReadTheDocs
- Issue Tracker on GitHub
- Jupyter Discourse Forum
- Jupyter Website
- Images on Quay.io
Acknowledgments
- Starting from
2022-07-05
,aarch64
self-hosted runners were sponsored by@mathbunnyru
. Please, consider sponsoring his work on GitHub - Starting from
2023-10-31
,aarch64
self-hosted runners are sponsored by an amazing2i2c non-profit organization
CPU Architectures
- We publish containers for both
x86_64
andaarch64
platforms - Single-platform images have either
aarch64-
orx86_64-
tag prefixes, for example,quay.io/jupyter/base-notebook:aarch64-python-3.11.6
- Starting from
2022-09-21
, we create multi-platform images (excepttensorflow-notebook
) - Starting from
2023-06-01
, we create a multi-platformtensorflow-notebook
image as well - Starting from
2024-02-24
, we create CUDA enabled variants ofpytorch-notebook
image forx86_64
platform - Starting from
2024-03-26
, we create CUDA enabled variant oftensorflow-notebook
image forx86_64
platform
Using old images
This project only builds one set of images at a time.
If you want to use the older Ubuntu
and/or Python
version, you can use the following images:
Build Date | Ubuntu | Python | Tag |
---|---|---|---|
2022-10-09 | 20.04 | 3.7 | 1aac87eb7fa5 |
2022-10-09 | 20.04 | 3.8 | a374cab4fcb6 |
2022-10-09 | 20.04 | 3.9 | 5ae537728c69 |
2022-10-09 | 20.04 | 3.10 | f3079808ca8c |
2022-10-09 | 22.04 | 3.7 | b86753318aa1 |
2022-10-09 | 22.04 | 3.8 | 7285848c0a11 |
2022-10-09 | 22.04 | 3.9 | ed2908bbb62e |
2023-05-30 | 22.04 | 3.10 | 4d70cf8da953 |
2024-08-26 | 22.04 | 3.11 | 00987883e58d |
2024-10-22 | 24.04 | 3.11 | b74418220768 |
weekly build | 24.04 | 3.12 | latest |
Contributing
Please see the Contributor Guide on ReadTheDocs for information about how to contribute recipes, features, tests, and community-maintained stacks.
Alternatives
- rocker/binder - From the R focused rocker-project, lets you run both RStudio and Jupyter either standalone or in a JupyterHub
- jupyter/repo2docker - Turn git repositories into Jupyter-enabled Docker Images
- openshift/source-to-image - A tool for building artifacts from source code and injecting them into docker images
- jupyter-on-openshift/jupyter-notebooks - OpenShift compatible S2I builder for basic notebook images
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot