Convert Figma logo to code with AI

mlfoundations logoopen_clip

An open source implementation of CLIP.

10,016
966
10,016
114

Top Related Projects

24,594

CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

A latent text-to-image diffusion model

30,331

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

4,727

PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

19,863

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Quick Overview

Open CLIP is an open-source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training) model. It provides a framework for training and evaluating CLIP models, offering compatibility with various architectures and datasets. This project aims to make CLIP technology more accessible and customizable for researchers and developers.

Pros

  • Flexible and extensible implementation of CLIP
  • Supports multiple model architectures and datasets
  • Provides pre-trained models and easy fine-tuning capabilities
  • Active development and community support

Cons

  • Requires significant computational resources for training
  • Documentation could be more comprehensive
  • Limited to CLIP-specific tasks and may not be suitable for all vision-language applications
  • Potential for rapid changes in the codebase due to active development

Code Examples

  1. Loading a pre-trained model:
import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
  1. Encoding images and text:
import torch
from PIL import Image

image = preprocess(Image.open("image.jpg")).unsqueeze(0)
text = open_clip.tokenize(["a photo of a cat", "a photo of a dog"])

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
  1. Computing similarity between image and text:
similarity = (image_features @ text_features.T).softmax(dim=-1)
print("Similarity:", similarity)

Getting Started

To get started with Open CLIP, follow these steps:

  1. Install the library:
pip install open_clip-torch
  1. Import and use the library in your Python script:
import open_clip
import torch
from PIL import Image

# Load model and preprocess
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')

# Prepare image and text
image = preprocess(Image.open("image.jpg")).unsqueeze(0)
text = open_clip.tokenize(["a description of the image"])

# Compute features
with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

# Calculate similarity
similarity = (image_features @ text_features.T).softmax(dim=-1)
print("Similarity:", similarity)

This example demonstrates how to load a pre-trained model, encode an image and text, and compute their similarity using Open CLIP.

Competitor Comparisons

24,594

CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image

Pros of CLIP

  • Original implementation by OpenAI, ensuring high fidelity to the paper
  • Extensive documentation and examples provided
  • Backed by a large organization with significant resources

Cons of CLIP

  • Limited to PyTorch framework
  • Fewer pre-trained models available
  • Less frequent updates and maintenance

Code Comparison

CLIP:

import torch
from clip import clip

model, preprocess = clip.load("ViT-B/32", device="cuda")
image = preprocess(Image.open("image.jpg")).unsqueeze(0).to("cuda")
text = clip.tokenize(["a photo of a cat", "a photo of a dog"]).to("cuda")

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

open_clip:

import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
tokenizer = open_clip.get_tokenizer('ViT-B-32')

image = preprocess(Image.open("image.jpg")).unsqueeze(0)
text = tokenizer(["a photo of a cat", "a photo of a dog"])

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

Pros of transformers

  • Broader scope: Supports a wide range of NLP tasks and models beyond just CLIP
  • Extensive documentation and community support
  • Seamless integration with other Hugging Face tools and datasets

Cons of transformers

  • Larger library size, potentially slower to load and use
  • May have more dependencies and complexity for simple CLIP tasks

Code comparison

open_clip:

import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
text = open_clip.tokenize(["a photo of a cat", "a photo of a dog"])
image = preprocess(Image.open("path/to/image.jpg")).unsqueeze(0)

transformers:

from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=Image.open("path/to/image.jpg"), return_tensors="pt", padding=True)

A latent text-to-image diffusion model

Pros of Stable-Diffusion

  • Focuses on image generation, offering powerful text-to-image capabilities
  • Provides a more complete end-to-end solution for image synthesis
  • Includes pre-trained models and easy-to-use inference scripts

Cons of Stable-Diffusion

  • More complex architecture, potentially harder to understand and modify
  • Requires more computational resources for training and inference
  • Less flexible for general-purpose vision-language tasks

Code Comparison

Stable-Diffusion (image generation):

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
image = pipe("A beautiful sunset over the ocean").images[0]
image.save("generated_image.png")

Open-CLIP (image-text similarity):

import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
image = preprocess(Image.open("image.jpg")).unsqueeze(0)
text = open_clip.tokenize(["A dog", "A cat"])
image_features = model.encode_image(image)
text_features = model.encode_text(text)
similarity = (image_features @ text_features.T).softmax(dim=-1)
30,331

Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Pros of fairseq

  • Broader scope: Supports a wide range of sequence modeling tasks, including machine translation, text summarization, and language modeling
  • Extensive documentation: Offers comprehensive guides, tutorials, and examples for various use cases
  • Large community: Benefits from Facebook's backing and a substantial user base, leading to frequent updates and support

Cons of fairseq

  • Steeper learning curve: More complex architecture due to its broader scope, potentially challenging for beginners
  • Heavier resource requirements: May require more computational power for training and inference compared to Open CLIP's focused approach

Code Comparison

fairseq:

from fairseq.models.roberta import RobertaModel

roberta = RobertaModel.from_pretrained('/path/to/roberta.base')
tokens = roberta.encode('Hello world!')
features = roberta.extract_features(tokens)

Open CLIP:

import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
image = preprocess(image).unsqueeze(0)
text = open_clip.tokenize(["a photo of a cat"])
image_features, text_features = model(image, text)
4,727

PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Pros of BLIP

  • Supports a wider range of vision-language tasks, including image captioning and visual question answering
  • Offers pre-trained models with state-of-the-art performance on various benchmarks
  • Provides a more comprehensive and flexible architecture for multimodal learning

Cons of BLIP

  • Requires more computational resources due to its larger model size and complexity
  • May have a steeper learning curve for implementation compared to Open CLIP
  • Less focused on efficient contrastive learning, which is Open CLIP's primary strength

Code Comparison

BLIP example:

from models.blip import blip_decoder
model = blip_decoder(pretrained='model_large.pth', image_size=384, vit='large')
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)

Open CLIP example:

import open_clip
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
text = clip.tokenize(["a diagram", "a dog", "a cat"])
image = preprocess(Image.open("CLIP.png")).unsqueeze(0)

Both repositories offer powerful vision-language models, but BLIP provides a more comprehensive solution for various tasks, while Open CLIP focuses on efficient contrastive learning and image-text matching.

19,863

Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Pros of UniLM

  • Broader scope: Supports various NLP tasks beyond image-text understanding
  • More versatile: Can be fine-tuned for different downstream tasks
  • Larger community: More contributors and wider adoption in industry

Cons of UniLM

  • Higher complexity: Requires more resources and expertise to implement
  • Less focused: May not be as optimized for specific image-text tasks
  • Steeper learning curve: More challenging for beginners to get started

Code Comparison

UniLM example:

from unilm import UniLMTokenizer, UniLMForConditionalGeneration

tokenizer = UniLMTokenizer.from_pretrained("microsoft/unilm-base-cased")
model = UniLMForConditionalGeneration.from_pretrained("microsoft/unilm-base-cased")

input_ids = tokenizer.encode("Hello, how are you?", return_tensors="pt")
outputs = model.generate(input_ids)

OpenCLIP example:

import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32-quickgelu', pretrained='laion400m_e32')
tokenizer = open_clip.get_tokenizer('ViT-B-32-quickgelu')

image = preprocess(image).unsqueeze(0)
text = tokenizer(["a photo of a cat"])

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

OpenCLIP

[Paper] [Citations] [Clip Colab] [Coca Colab] pypi

Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training).

Using this codebase, we have trained several models on a variety of data sources and compute budgets, ranging from small-scale experiments to larger runs including models trained on datasets such as LAION-400M, LAION-2B and DataComp-1B. Many of our models and their scaling properties are studied in detail in the paper reproducible scaling laws for contrastive language-image learning. Some of the best models we've trained and their zero-shot ImageNet-1k accuracy are shown below, along with the ViT-L model trained by OpenAI and other state-of-the-art open source alternatives (all can be loaded via OpenCLIP). We provide more details about our full collection of pretrained models here, and zero-shot results for 38 datasets here.

ModelTraining dataResolution# of samples seenImageNet zero-shot acc.
ConvNext-BaseLAION-2B256px13B71.5%
ConvNext-LargeLAION-2B320px29B76.9%
ConvNext-XXLargeLAION-2B256px34B79.5%
ViT-B/32DataComp-1B256px34B72.8%
ViT-B/16DataComp-1B224px13B73.5%
ViT-L/14LAION-2B224px32B75.3%
ViT-H/14LAION-2B224px32B78.0%
ViT-L/14DataComp-1B224px13B79.2%
ViT-G/14LAION-2B224px34B80.1%
ViT-L/14 (Original CLIP)WIT224px13B75.5%
ViT-SO400M/14 (SigLIP)WebLI224px45B82.0%
ViT-SO400M-14-SigLIP-384 (SigLIP)WebLI384px45B83.1%
ViT-H/14-quickgelu (DFN)DFN-5B224px39B83.4%
ViT-H-14-378-quickgelu (DFN)DFN-5B378px44B84.4%

Model cards with additional model specific details can be found on the Hugging Face Hub under the OpenCLIP library tag: https://huggingface.co/models?library=open_clip.

If you found this repository useful, please consider citing. We welcome anyone to submit an issue or send an email if you have any other requests or suggestions.

Note that portions of src/open_clip/ modelling and tokenizer code are adaptations of OpenAI's official repository.

Approach

CLIP
Image Credit: https://github.com/openai/CLIP

Usage

pip install open_clip_torch
import torch
from PIL import Image
import open_clip

model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
model.eval()  # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
tokenizer = open_clip.get_tokenizer('ViT-B-32')

image = preprocess(Image.open("docs/CLIP.png")).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat"])

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)

    text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)  # prints: [[1., 0., 0.]]

See also this [Clip Colab].

To compute billions of embeddings efficiently, you can use clip-retrieval which has openclip support.

Pretrained models

We offer a simple model interface to instantiate both pre-trained and untrained models. To see which pretrained models are available, use the following code snippet. More details about our pretrained models are available here.

>>> import open_clip
>>> open_clip.list_pretrained()

You can find more about the models we support (e.g. number of parameters, FLOPs) in this table.

NOTE: Many existing checkpoints use the QuickGELU activation from the original OpenAI models. This activation is actually less efficient than native torch.nn.GELU in recent versions of PyTorch. The model defaults are now nn.GELU, so one should use model definitions with -quickgelu postfix for the OpenCLIP pretrained weights. All OpenAI pretrained weights will always default to QuickGELU. One can also use the non -quickgelu model definitions with pretrained weights using QuickGELU but there will be an accuracy drop, for fine-tune that will likely vanish for longer runs. Future trained models will use nn.GELU.

Loading models

Models can be loaded with open_clip.create_model_and_transforms, as shown in the example below. The model name and corresponding pretrained keys are compatible with the outputs of open_clip.list_pretrained().

The pretrained argument also accepts local paths, for example /path/to/my/b32.pt. You can also load checkpoints from huggingface this way. To do so, download the open_clip_pytorch_model.bin file (for example, https://huggingface.co/laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K/tree/main), and use pretrained=/path/to/open_clip_pytorch_model.bin.

# pretrained also accepts local paths
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k') 

Fine-tuning on classification tasks

This repository is focused on training CLIP models. To fine-tune a trained zero-shot model on a downstream classification task such as ImageNet, please see our other repository: WiSE-FT. The WiSE-FT repository contains code for our paper on Robust Fine-tuning of Zero-shot Models, in which we introduce a technique for fine-tuning zero-shot models while preserving robustness under distribution shift.

Data

To download datasets as webdataset, we recommend img2dataset.

Conceptual Captions

See cc3m img2dataset example.

YFCC and other datasets

In addition to specifying the training data via CSV files as mentioned above, our codebase also supports webdataset, which is recommended for larger scale datasets. The expected format is a series of .tar files. Each of these .tar files should contain two files for each training example, one for the image and one for the corresponding text. Both files should have the same name but different extensions. For instance, shard_001.tar could contain files such as abc.jpg and abc.txt. You can learn more about webdataset at https://github.com/webdataset/webdataset. We use .tar files with 1,000 data points each, which we create using tarp.

You can download the YFCC dataset from Multimedia Commons. Similar to OpenAI, we used a subset of YFCC to reach the aforementioned accuracy numbers. The indices of images in this subset are in OpenAI's CLIP repository.

Training CLIP

Install

We advise you first create a virtual environment with:

python3 -m venv .env
source .env/bin/activate
pip install -U pip

You can then install openclip for training with pip install 'open_clip_torch[training]'.

Development

If you want to make changes to contribute code, you can clone openclip then run make install in openclip folder (after creating a virtualenv)

Install pip PyTorch as per https://pytorch.org/get-started/locally/

You may run make install-training to install training deps

Testing

Test can be run with make install-test then make test

python -m pytest -x -s -v tests -k "training" to run a specific test

Running regression tests against a specific git revision or tag:

  1. Generate testing data

    python tests/util_test.py --model RN50 RN101 --save_model_list models.txt --git_revision 9d31b2ec4df6d8228f370ff20c8267ec6ba39383
    

    WARNING: This will invoke git and modify your working tree, but will reset it to the current state after data has been generated!
    Don't modify your working tree while test data is being generated this way.

  2. Run regression tests

    OPEN_CLIP_TEST_REG_MODELS=models.txt python -m pytest -x -s -v -m regression_test
    

Sample single-process running code:

python -m open_clip_train.main \
    --save-frequency 1 \
    --zeroshot-frequency 1 \
    --report-to tensorboard \
    --train-data="/path/to/train_data.csv"  \
    --val-data="/path/to/validation_data.csv"  \
    --csv-img-key filepath \
    --csv-caption-key title \
    --imagenet-val=/path/to/imagenet/root/val/ \
    --warmup 10000 \
    --batch-size=128 \
    --lr=1e-3 \
    --wd=0.1 \
    --epochs=30 \
    --workers=8 \
    --model RN50

Note: imagenet-val is the path to the validation set of ImageNet for zero-shot evaluation, not the training set! You can remove this argument if you do not want to perform zero-shot evaluation on ImageNet throughout training. Note that the val folder should contain subfolders. If it does not, please use this script.

Multi-GPU and Beyond

This code has been battle tested up to 1024 A100s and offers a variety of solutions for distributed training. We include native support for SLURM clusters.

As the number of devices used to train increases, so does the space complexity of the the logit matrix. Using a naïve all-gather scheme, space complexity will be O(n^2). Instead, complexity may become effectively linear if the flags --gather-with-grad and --local-loss are used. This alteration results in one-to-one numerical results as the naïve method.

Epochs

For larger datasets (eg Laion2B), we recommend setting --train-num-samples to a lower value than the full epoch, for example --train-num-samples 135646078 to 1/16 of an epoch in conjunction with --dataset-resampled to do sampling with replacement. This allows having frequent checkpoints to evaluate more often.

Patch Dropout

Recent research has shown that one can dropout half to three-quarters of the visual tokens, leading to up to 2-3x training speeds without loss of accuracy.

You can set this on your visual transformer config with the key patch_dropout.

In the paper, they also finetuned without the patch dropout at the end. You can do this with the command-line argument --force-patch-dropout 0.

Multiple data sources

OpenCLIP supports using multiple data sources, by separating different data paths with ::. For instance, to train on CC12M and on LAION, one might use --train-data "/data/cc12m/cc12m-train-{0000..2175}.tar::/data/LAION-400M/{00000..41455}.tar". Using --dataset-resampled is recommended for these cases.

By default, on expectation the amount of times the model will see a sample from each source is proportional to the size of the source. For instance, when training on one data source with size 400M and one with size 10M, samples from the first source are 40x more likely to be seen in expectation.

We also support different weighting of the data sources, by using the --train-data-upsampling-factors flag. For instance, using --train-data-upsampling-factors=1::1 in the above scenario is equivalent to not using the flag, and --train-data-upsampling-factors=1::2 is equivalent to upsampling the second data source twice. If you want to sample from data sources with the same frequency, the upsampling factors should be inversely proportional to the sizes of the data sources. For instance, if dataset A has 1000 samples and dataset B has 100 samples, you can use --train-data-upsampling-factors=0.001::0.01 (or analogously, --train-data-upsampling-factors=1::10).

Single-Node

We make use of torchrun to launch distributed jobs. The following launches a a job on a node of 4 GPUs:

cd open_clip/src
torchrun --nproc_per_node 4 -m open_clip_train.main \
    --train-data '/data/cc12m/cc12m-train-{0000..2175}.tar' \
    --train-num-samples 10968539 \
    --dataset-type webdataset \
    --batch-size 320 \
    --precision amp \
    --workers 4 \
    --imagenet-val /data/imagenet/validation/

Multi-Node

The same script above works, so long as users include information about the number of nodes and host node.

cd open_clip/src
torchrun --nproc_per_node=4 \
    --rdzv_endpoint=$HOSTE_NODE_ADDR \
    -m open_clip_train.main \
    --train-data '/data/cc12m/cc12m-train-{0000..2175}.tar' \
    --train-num-samples 10968539 \
    --dataset-type webdataset \
    --batch-size 320 \
    --precision amp \
    --workers 4 \
    --imagenet-val /data/imagenet/validation/

SLURM

This is likely the easiest solution to utilize. The following script was used to train our largest models:

#!/bin/bash -x
#SBATCH --nodes=32
#SBATCH --gres=gpu:4
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=6
#SBATCH --wait-all-nodes=1
#SBATCH --job-name=open_clip
#SBATCH --account=ACCOUNT_NAME
#SBATCH --partition PARTITION_NAME

eval "$(/path/to/conda/bin/conda shell.bash hook)" # init conda
conda activate open_clip
export CUDA_VISIBLE_DEVICES=0,1,2,3
export MASTER_PORT=12802

master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr

cd /shared/open_clip
export PYTHONPATH="$PYTHONPATH:$PWD/src"
srun --cpu_bind=v --accel-bind=gn python -u src/open_clip_train/main.py \
    --save-frequency 1 \
    --report-to tensorboard \
    --train-data="/data/LAION-400M/{00000..41455}.tar" \
    --warmup 2000 \
    --batch-size=256 \
    --epochs=32 \
    --workers=8 \
    --model ViT-B-32 \
    --name "ViT-B-32-Vanilla" \
    --seed 0 \
    --local-loss \
    --gather-with-grad

Resuming from a checkpoint:

python -m open_clip_train.main \
    --train-data="/path/to/train_data.csv" \
    --val-data="/path/to/validation_data.csv"  \
    --resume /path/to/checkpoints/epoch_K.pt

Training CoCa:

Training CoCa models is enabled through specifying a CoCa config using the --model parameter of the training script. Currently available configs are "coca_base", "coca_ViT-B-32", and "coca_roberta-ViT-B-32" (which uses RoBERTa as the text encoder). CoCa configs are different from CLIP configs because they have an additional "multimodal_cfg" component which specifies parameters for the multimodal text decoder. Here's an example from the coca_ViT-B-32 config:

"multimodal_cfg": {
	"context_length": 76,
	"vocab_size": 49408,
	"width": 512,
	"heads": 8,
	"layers": 12,
	"latent_dim": 512,
	"attn_pooler_heads": 8
}

Credit to lucidrains for initial code, gpucce for adapting the code to open_clip, and iejMac for training the models.

Generating text with CoCa

import open_clip
import torch
from PIL import Image

model, _, transform = open_clip.create_model_and_transforms(
  model_name="coca_ViT-L-14",
  pretrained="mscoco_finetuned_laion2B-s13B-b90k"
)

im = Image.open("cat.jpg").convert("RGB")
im = transform(im).unsqueeze(0)

with torch.no_grad(), torch.cuda.amp.autocast():
  generated = model.generate(im)

print(open_clip.decode(generated[0]).split("<end_of_text>")[0].replace("<start_of_text>", ""))

See also this [Coca Colab]

Fine Tuning CoCa

To fine-tune coca on mscoco, first create the dataset, one way is using a csvdataset and perhaps the simplest way to do it is using CLIP_benchmark which in turn uses pycocotools (that can be used also by itself).

from clip_benchmark.datasets.builder import build_dataset
import pandas as pd
import os

root_path = "path/to/data/dir" # set this to smth meaningful
ds = build_dataset("mscoco_captions", root=root_path, split="train", task="captioning") # this downloads the dataset if it is not there already
coco = ds.coco
imgs = coco.loadImgs(coco.getImgIds())
future_df = {"filepath":[], "title":[]}
for img in imgs:
    caps = coco.imgToAnns[img["id"]]
    for cap in caps:
        future_df["filepath"].append(img["file_name"])
        future_df["title"].append(cap["caption"])
pd.DataFrame.from_dict(future_df).to_csv(
  os.path.join(root_path, "train2014.csv"), index=False, sep="\t"
)

This should create a csv dataset that one can use to fine-tune coca with open_clip

python -m open_clip_train.main \
    --dataset-type "csv" \
    --train-data "path/to/data/dir/train2014.csv" \
    --warmup 1000 \
    --batch-size 128 \
    --lr 1e-5 \
    --wd 0.1 \
    --epochs 1 \
    --workers 3 \
    --model "coca_ViT-L-14" \
    --report-to "wandb" \
    --coca-contrastive-loss-weight 0 \
    --coca-caption-loss-weight 1 \
    --log-every-n-steps 100

This is a general setting, open_clip has very parameters that can be set, python -m open_clip_train.main --help should show them. The only relevant change compared to pre-training are the two arguments

--coca-contrastive-loss-weight 0
--coca-caption-loss-weight 1

which make the model only train the generative side.

Training with pre-trained language models as text encoder:

If you wish to use different language models as the text encoder for CLIP you can do so by using one of the Hugging Face model configs in src/open_clip/model_configs and passing in it's tokenizer as the --model and --hf-tokenizer-name parameters respectively. Currently we only support RoBERTa ("test-roberta" config), however adding new models should be trivial. You can also determine how many layers, from the end, to leave unfrozen with the --lock-text-unlocked-layers parameter. Here's an example command to train CLIP with the RoBERTa LM that has it's last 10 layers unfrozen:

python -m open_clip_train.main \
         --train-data="pipe:aws s3 cp s3://s-mas/cc3m/{00000..00329}.tar -" \
         --train-num-samples 3000000 \
         --val-data="pipe:aws s3 cp s3://s-mas/cc3m/{00330..00331}.tar -" \
         --val-num-samples 10000 \
         --dataset-type webdataset \
         --batch-size 256 \
         --warmup 2000 \
         --epochs 10 \
         --lr 5e-4 \
         --precision amp \
         --workers 6 \
         --model "roberta-ViT-B-32" \
         --lock-text \
         --lock-text-unlocked-layers 10 \
         --name "10_unfrozen" \
         --report-to "tensorboard" \

Loss Curves

When run on a machine with 8 GPUs the command should produce the following training curve for Conceptual Captions:

CLIP zero shot training curve

More detailed curves for Conceptual Captions are given at /docs/clip_conceptual_captions.md.

When training a RN50 on YFCC the same hyperparameters as above are used, with the exception of lr=5e-4 and epochs=32.

Note that to use another model, like ViT-B/32 or RN50x4 or RN50x16 or ViT-B/16, specify with --model RN50x4.

Logging

For tensorboard logging, run:

tensorboard --logdir=logs/tensorboard/ --port=7777

For wandb logging, we recommend looking at the step variable instead of Step, since the later was not properly set in earlier versions of this codebase. For older runs with models trained before https://github.com/mlfoundations/open_clip/pull/613, the Step variable should be ignored. For newer runs, after that PR, the two variables are the same.

Evaluation / Zero-Shot

We recommend https://github.com/LAION-AI/CLIP_benchmark#how-to-use for systematic evaluation on 40 datasets.

Evaluating local checkpoint:

python -m open_clip_train.main \
    --val-data="/path/to/validation_data.csv"  \
    --model RN101 \
    --pretrained /path/to/checkpoints/epoch_K.pt

Evaluating hosted pretrained checkpoint on ImageNet zero-shot prediction:

python -m open_clip_train.main \
    --imagenet-val /path/to/imagenet/validation \
    --model ViT-B-32-quickgelu \
    --pretrained laion400m_e32

Model distillation

You can distill from a pre-trained by using --distill-model and --distill-pretrained to specify the model you'd like to distill from. For instance, to distill from OpenAI ViT-L/14 use --distill-model ViT-L-14 --distill-pretrained openai.

Gradient accumulation

To simulate larger batches use --accum-freq k. If per gpu batch size, --batch-size, is m, then the effective batch size will be k * m * num_gpus.

When increasing --accum-freq from its default of 1, samples/s will remain approximately constant (batch size will double, as will time-per-batch). It is recommended to use other features to reduce batch size such as --grad-checkpointing --local-loss --gather-with-grad before increasing --accum-freq. --accum-freq can be used in addition to these features.

Instead of 1 forward pass per example, there are now 2 forward passes per-example. However, the first is done with torch.no_grad.

There is some additional GPU memory required --- the features and data from all m batches are stored in memory.

There are also m loss computations instead of the usual 1.

For more information see Cui et al. (https://arxiv.org/abs/2112.09331) or Pham et al. (https://arxiv.org/abs/2111.10050).

Int8 Support

We have beta support for int8 training and inference. You can enable int8 training with --use-bnb-linear SwitchBackLinearGlobal or --use-bnb-linear SwitchBackLinearGlobalMemEfficient. Please see the bitsandbytes library for definitions for these layers. For CLIP VIT-Huge this should currently correspond to a 10% training speedup with no accuracy loss. More speedups comin when the attention layer is refactored so that linear layers man be replaced there, too.

See the tutorial https://github.com/mlfoundations/open_clip/blob/main/tutorials/int8_tutorial.ipynb or paper.

Support for remote loading/training

It is always possible to resume directly from a remote file, e.g., a file in an s3 bucket. Just set --resume s3://<path-to-checkpoint> . This will work with any filesystem supported by fsspec.

It is also possible to train open_clip models while continuously backing up to s3. This can help to avoid slow local file systems.

Say that your node has a local ssd /scratch, an s3 bucket s3://<path-to-bucket>.

In that case, set --logs /scratch and --remote-sync s3://<path-to-bucket>. Then, a background process will sync /scratch/<run-name> to s3://<path-to-bucket>/<run-name>. After syncing, the background process will sleep for --remote-sync-frequency seconds, which defaults to 5 minutes.

There is also experimental support for syncing to other remote file systems, not just s3. To do so, specify --remote-sync-protocol fsspec. However, this is currently very slow and not recommended.

Also, to optionally avoid saving too many checkpoints locally when using these features, you can use --delete-previous-checkpoint which deletes the previous checkpoint after saving a new one.

Note: if you are using this feature with --resume latest, there are a few warnings. First, use with --save-most-recent is not supported. Second, only s3 is supported. Finally, since the sync happens in the background, it is possible that the most recent checkpoint may not be finished syncing to the remote.

Pushing Models to Hugging Face Hub

The module open_clip.push_to_hf_hub includes helpers for pushing models /w weights and config to the HF Hub.

The tool can be run from command line, ex: python -m open_clip.push_to_hf_hub --model convnext_large_d_320 --pretrained /train/checkpoints/epoch_12.pt --repo-id laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft

Acknowledgments

We gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this part of work by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC).

The Team

Current development of this repository is led by Ross Wightman, Romain Beaumont, Cade Gordon, and Vaishaal Shankar.

The original version of this repository is from a group of researchers at UW, Google, Stanford, Amazon, Columbia, and Berkeley.

Gabriel Ilharco*, Mitchell Wortsman*, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, John Miller, Hongseok Namkoong, Hannaneh Hajishirzi, Ali Farhadi, Ludwig Schmidt

Special thanks to Jong Wook Kim and Alec Radford for help with reproducing CLIP!

Citing

If you found this repository useful, please consider citing:

@software{ilharco_gabriel_2021_5143773,
  author       = {Ilharco, Gabriel and
                  Wortsman, Mitchell and
                  Wightman, Ross and
                  Gordon, Cade and
                  Carlini, Nicholas and
                  Taori, Rohan and
                  Dave, Achal and
                  Shankar, Vaishaal and
                  Namkoong, Hongseok and
                  Miller, John and
                  Hajishirzi, Hannaneh and
                  Farhadi, Ali and
                  Schmidt, Ludwig},
  title        = {OpenCLIP},
  month        = jul,
  year         = 2021,
  note         = {If you use this software, please cite it as below.},
  publisher    = {Zenodo},
  version      = {0.1},
  doi          = {10.5281/zenodo.5143773},
  url          = {https://doi.org/10.5281/zenodo.5143773}
}
@inproceedings{cherti2023reproducible,
  title={Reproducible scaling laws for contrastive language-image learning},
  author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2818--2829},
  year={2023}
}
@inproceedings{Radford2021LearningTV,
  title={Learning Transferable Visual Models From Natural Language Supervision},
  author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
  booktitle={ICML},
  year={2021}
}
@inproceedings{schuhmann2022laionb,
  title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
  author={Christoph Schuhmann and
          Romain Beaumont and
          Richard Vencu and
          Cade W Gordon and
          Ross Wightman and
          Mehdi Cherti and
          Theo Coombes and
          Aarush Katta and
          Clayton Mullis and
          Mitchell Wortsman and
          Patrick Schramowski and
          Srivatsa R Kundurthy and
          Katherine Crowson and
          Ludwig Schmidt and
          Robert Kaczmarczyk and
          Jenia Jitsev},
  booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2022},
  url={https://openreview.net/forum?id=M3Y74vmsMcY}
}

DOI