Hello-Python
Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 100 clases, 44 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...
Top Related Projects
12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
The Python programming language
All Algorithms implemented in Python
Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.
An opinionated list of awesome Python frameworks, libraries, software and resources.
Python - 100天从新手到大师
Quick Overview
The "Hello-Python" repository on GitHub is a collection of Python code examples and tutorials created by the developer Mouredev. It serves as a learning resource for beginners and experienced Python programmers alike, covering a wide range of topics and concepts in the Python programming language.
Pros
- Comprehensive Content: The repository contains a diverse set of Python code examples and tutorials, covering a wide range of topics, from basic syntax and data structures to more advanced concepts like web development, data analysis, and machine learning.
- Beginner-Friendly: The code examples and tutorials are well-organized and accompanied by clear explanations, making it an excellent resource for Python beginners to learn and improve their skills.
- Active Maintenance: The repository is actively maintained, with regular updates and new content being added, ensuring that the information remains relevant and up-to-date.
- Community Engagement: The project has a strong community presence, with contributors and users providing feedback, suggestions, and support through the repository's issue tracker and discussions.
Cons
- Lack of Structured Curriculum: While the repository contains a wealth of information, it may lack a structured curriculum or learning path, which could make it challenging for some users to navigate and progress through the content.
- Uneven Quality: The quality and depth of the code examples and tutorials may vary, as they are contributed by different authors and may not always adhere to the same standards.
- Limited Project-Specific Examples: The repository primarily focuses on general Python concepts and examples, and may not provide as much guidance on building specific types of applications or projects.
- Language Barrier: The repository is primarily in Spanish, which may be a barrier for some users who are more comfortable with English-language resources.
Code Examples
N/A (This is not a code library)
Getting Started
N/A (This is not a code library)
Competitor Comparisons
12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
Pros of ML-For-Beginners
- Comprehensive curriculum covering various ML topics
- Includes hands-on projects and quizzes for practical learning
- Supported by Microsoft, ensuring high-quality content
Cons of ML-For-Beginners
- Focuses solely on machine learning, not general Python programming
- May be more challenging for absolute beginners
- Requires more time commitment due to its extensive content
Code Comparison
ML-For-Beginners (Python example):
import numpy as np
from sklearn.linear_model import LinearRegression
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 5, 4])
model = LinearRegression().fit(X, y)
print(f"Coefficient: {model.coef_[0]:.2f}")
Hello-Python (Python example):
def greet(name):
print(f"Hello, {name}!")
greet("World")
The ML-For-Beginners example demonstrates a simple linear regression model, while Hello-Python shows a basic greeting function, illustrating the difference in complexity and focus between the two repositories.
The Python programming language
Pros of cpython
- Official Python implementation with comprehensive documentation
- Extensive codebase covering all Python language features
- Actively maintained by core Python developers
Cons of cpython
- Large and complex codebase, potentially overwhelming for beginners
- Primarily focused on language implementation, not learning resources
- Requires advanced knowledge to contribute effectively
Code Comparison
Hello-Python:
# Basic "Hello, World!" example
print("Hello, World!")
cpython:
static PyObject *
builtin_print(PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
{
// Complex implementation of print() function
}
Summary
Hello-Python is a beginner-friendly repository focused on Python learning resources, while cpython is the official Python implementation. Hello-Python offers simple examples and tutorials, making it ideal for newcomers. In contrast, cpython provides the core Python language implementation, which is more suitable for advanced developers and those interested in Python's internals.
Hello-Python emphasizes educational content, whereas cpython focuses on language development and maintenance. While Hello-Python uses straightforward Python code examples, cpython contains complex C code that implements Python's functionality.
Choose Hello-Python for learning Python basics, and explore cpython for understanding Python's inner workings or contributing to the language itself.
All Algorithms implemented in Python
Pros of Python
- Extensive collection of algorithms and data structures
- Well-organized directory structure for easy navigation
- Includes implementations in multiple programming styles
Cons of Python
- Lacks beginner-friendly tutorials or explanations
- Focuses solely on algorithms, missing broader programming concepts
- May be overwhelming for newcomers to programming
Code Comparison
Hello-Python (Basic Python introduction):
print("Hello, Python!")
name = input("What's your name? ")
print(f"Nice to meet you, {name}!")
Python (Algorithm implementation):
def binary_search(arr, target):
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
Hello-Python is more suitable for beginners learning Python basics, while Python offers a comprehensive collection of algorithms for more advanced users or those specifically interested in algorithmic implementations.
Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.
Pros of system-design-primer
- Comprehensive coverage of system design concepts and principles
- Includes diagrams and visual aids for better understanding
- Regularly updated with new content and improvements
Cons of system-design-primer
- Primarily focused on theoretical concepts rather than hands-on coding
- May be overwhelming for beginners due to its extensive content
- Less interactive compared to Hello-Python's practical approach
Code comparison
system-design-primer:
# No specific code examples provided in the repository
Hello-Python:
# Example from Basic/01_variables.py
my_string_variable = "My String variable"
print(my_string_variable)
my_int_variable = 5
print(my_int_variable)
Summary
system-design-primer is an extensive resource for learning system design concepts, offering comprehensive coverage and visual aids. However, it lacks hands-on coding examples and may be overwhelming for beginners. Hello-Python, on the other hand, provides a more practical approach to learning Python with interactive code examples, making it more suitable for those looking to start coding immediately. The choice between the two repositories depends on whether the user is seeking theoretical knowledge of system design or practical Python programming skills.
An opinionated list of awesome Python frameworks, libraries, software and resources.
Pros of awesome-python
- Comprehensive curated list of Python resources, libraries, and tools
- Well-organized into categories for easy navigation
- Regularly updated with community contributions
Cons of awesome-python
- Lacks hands-on coding examples and tutorials
- May be overwhelming for beginners due to the sheer volume of information
Code comparison
Hello-Python provides practical code examples:
# Basic arithmetic operations
print(3 + 4)
print(3 - 4)
print(3 * 4)
print(3 / 4)
awesome-python focuses on listing resources rather than providing code samples:
## Web Frameworks
*Full stack web frameworks.*
* [Django](https://www.djangoproject.com/) - The most popular web framework in Python.
* [Flask](https://flask.palletsprojects.com/) - A lightweight WSGI web application framework.
Summary
Hello-Python is better suited for beginners looking for hands-on Python learning, while awesome-python serves as an extensive reference for Python developers of all levels. Hello-Python offers practical coding examples and tutorials, whereas awesome-python provides a comprehensive list of Python resources, libraries, and tools without direct code samples.
Python - 100天从新手到大师
Pros of Python-100-Days
- More comprehensive coverage of Python topics over a longer timeframe
- Includes advanced topics like web development, data analysis, and machine learning
- Structured as a day-by-day learning path, making it easier to follow
Cons of Python-100-Days
- May be overwhelming for absolute beginners due to its extensive content
- Less focus on interactive coding exercises compared to Hello-Python
- Written primarily in Chinese, which may be a barrier for non-Chinese speakers
Code Comparison
Python-100-Days (Day 1 example):
print('hello, world!')
print('你好', '世界')
print('hello', 'world', sep=', ', end='!')
print('goodbye, world', end='!\n')
Hello-Python (Basic example):
print("Hola, Python!")
number = 10
print(f"This is a number: {number}")
Both repositories provide basic Python examples, but Python-100-Days tends to introduce more concepts in a single example, while Hello-Python focuses on simpler, more digestible snippets.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
Hello Python
Curso para aprender el lenguaje de programación Python desde cero y para principiantes
Proyecto realizado durante emisiones en directo desde Twitch
Si consideras útil el curso, apóyalo haciendo "â Star" en el repositorio. ¡Gracias!
¡NUEVO! Curso de Python para web
Clases en vÃdeo
Curso de fundamentos desde cero
Curso que agrupa todas las clases en directo que hacen referencia a los fundamentos de Python.
Código: Directorio "Basic" en el proyecto
- Introducción
- Contexto
- Lección 1 - Configuración
- Lección 2 - Hola Mundo
- Lección 3 - Variables
- Lección 4 - Operadores
- Lección 5 - Strings
- Lección 6 - Listas
- Lección 7 - Tuplas
- Lección 8 - Sets
- Lección 9 - Diccionarios
- Lección 10 - Condicionales
- Lección 11 - Bucles/Loops/Ciclos
- Lección 12 - Funciones
- Lección 13 - Clases
- Lección 14 - Excepciones
- Lección 15 - Módulos
- Próximos pasos
Curso intermedio de fundamentos desde cero
Curso en el que continuamos aprendiendo Python desde sus bases, siguiendo la ruta de aprendizaje desde la última lección del curso de inicial.
Código: Directorio "Intermediate" en el proyecto
- Introducción
- Lección 1 - Dates
- Lección 2 - List Comprehension
- Lección 3 - Resolución de retos de programación
- Lección 4 - Lambdas
- Lección 5 - Funciones de orden superior
- Lección 6 - Tipos de error
- Lección 7 - Manejo de ficheros
- Lección 8 - Expresiones regulares
- Lección 9 - Manejo de paquetes
- Próximos pasos
Backend desde cero
Curso en el que aprenderemos a utilizar Python para backend e implementaremos un API REST con autenticación, base de datos y desplegaremos el proyecto en un servidor real.
Código: Directorio "Backend" en el proyecto
- Introducción
- Lección 01 - ¿Qué es un backend?
- Lección 02 - API y FastAPI
- Lección 03 - Type Hints
- Lección 04 - Configuración FastAPI
- Lección 05 - Hola mundo
- Lección 06 - Operación GET
- Lección 07 - Peticiones HTTP
- Lección 08 - Creación API
- Lección 09 - Path y Query
- Lección 10 - Operaciones POST, PUT y DELETE
- Lección 11 - HTTP status codes
- Lección 12 - Routers
- Lección 13 - Recursos estáticos
- Lección 14 - Autorización OAuth2
- Lección 15 - OAuth2 JWT
- Lección 16 - MongoDB
- Lección 17 - MongoDB Atlas
- Lección 18 - Despliegue en Deta *
- Próximos pasos
*ACTUALIZACIÃN Sobre la lección 18: Deta ha actualizado ligeramente su servicio de despliegue de aplicaciones con FastAPI. Tienes toda la documentación aquÃ. También han creado una guÃa de migración.
Frontend desde cero
Cursos en los que aprenderemos a utilizar Python para desarrollo web con dos proyectos reales desplegados en producción. Tutoriales en vÃdeo paso a paso con 9 horas de contenido.
Aprende a integrar ChatGPT en tu proyecto desde cero
Clase de una hora de duración donde aprenderás a interactuar con ChatGPT desde tu aplicación, mantener conversaciones y establecer el contexto de la IA para potenciar tu proyecto.
Con todo el código publicado aquÃ.
Traductor de Voz con IA
Aprende a desarrollar un traductor de voz a varios idiomas utilizando con IA. Creando su Web y todo en 100 lÃneas.
Con todo el código publicado aquÃ.
Introducción al Testing
Taller de introducción a testing con Python creado junto a Carlos Blé y Miguel A. Gómez, expertos en la materia.
Extra: 15 curiosidades sobre Python
Y para finalizar... ¿Quieres saber aun más sobre él? Aquà tienes 15 curiosidades que quizás no conozcas sobre el lenguaje.
Información importante y preguntas frecuentes
Actualmente el curso está en pausa. Se han finalizados los bloques básico, intermedio y backend, y ese era el objetivo inicial del proyecto. No descarto añadir nuevas lecciones a futuro, pero creo que por el momento puede servir de base a cualquier persona que quiera empezar a aprender este lenguaje.
- Recuerda que he creado en el Discord un canal "ðpython" para que puedas comentar lo que quieras.
- En el momento que el curso continúe, actualizaré el repositorio y avisaré en redes.
¡MuchÃsimas gracias por todo el apoyo mostrado!
Enlaces de interés
- Web oficial de Python
- Tutorial oficial de Python en Español
- Repo 30 dÃas de Python
- Juego Codédex para aprender Python
- Visual Studio Code: El editor que estoy usando
- FastAPI: El framework para crear nuestra API Backend
- MongoDB: La base de datos que utiliza nuestro backend
- Deta: Para desplegar nuestra API en la nube
Si quieres unirte a nuestra comunidad de desarrollo, aprender programación de Apps, mejorar tus habilidades y ayudar a la continuidad del proyecto, puedes encontrarnos en:
Hola, mi nombre es Brais Moure.
Freelance full-stack iOS & Android engineer
Soy ingeniero de software desde 2010. Desde 2018 combino mi trabajo desarrollando Apps con la creación de contenido formativo sobre programación y tecnologÃa en diferentes redes sociales como @mouredev.
En mi perfil de GitHub tienes más información
Top Related Projects
12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
The Python programming language
All Algorithms implemented in Python
Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards.
An opinionated list of awesome Python frameworks, libraries, software and resources.
Python - 100天从新手到大师
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot