webextension-polyfill
A lightweight polyfill library for Promise-based WebExtension APIs in Chrome
Top Related Projects
Example Firefox add-ons created using the WebExtensions API
Quick Overview
The mozilla/webextension-polyfill is a library that provides a set of Promise-based wrappers for the WebExtension/BrowserExt APIs. It aims to make cross-browser extension development easier by offering a unified Promise-based interface, which is particularly useful for Firefox extensions that need to work in Chromium-based browsers.
Pros
- Simplifies cross-browser extension development
- Provides a consistent Promise-based API
- Reduces boilerplate code for handling callbacks
- Actively maintained by Mozilla
Cons
- Adds an extra dependency to extension projects
- May have a slight performance overhead compared to native APIs
- Not all WebExtension APIs are fully supported
- Requires developers to learn a new API layer
Code Examples
- Sending a message to a tab:
browser.tabs.query({active: true, currentWindow: true})
.then(tabs => browser.tabs.sendMessage(tabs[0].id, {greeting: "Hello"}))
.catch(error => console.error(`Error: ${error}`));
- Getting browser storage data:
browser.storage.local.get("myKey")
.then(result => console.log(`Value: ${result.myKey}`))
.catch(error => console.error(`Error: ${error}`));
- Creating a new tab:
browser.tabs.create({url: "https://example.com"})
.then(tab => console.log(`New tab created with id: ${tab.id}`))
.catch(error => console.error(`Error creating tab: ${error}`));
Getting Started
- Install the polyfill in your extension project:
npm install webextension-polyfill
- Include the polyfill in your extension's background script and content scripts:
<script src="browser-polyfill.min.js"></script>
- Use the
browser
namespace instead ofchrome
in your extension code:
browser.runtime.sendMessage({greeting: "Hello"})
.then(response => console.log(`Received response: ${response}`))
.catch(error => console.error(`Error: ${error}`));
- Enjoy writing more consistent and Promise-based extension code across different browsers!
Competitor Comparisons
Example Firefox add-ons created using the WebExtensions API
Pros of webextensions-examples
- Provides a wide range of practical examples for various WebExtension APIs
- Offers complete, working extensions that developers can use as starting points
- Includes examples for both simple and complex extension functionalities
Cons of webextensions-examples
- Not a library or polyfill, so it doesn't provide cross-browser compatibility
- Requires more effort to adapt examples to specific project needs
- May not always reflect the latest API changes or best practices
Code Comparison
webextensions-examples (from borderify example):
document.body.style.border = "5px solid red";
webextension-polyfill (usage example):
browser.tabs.query({active: true, currentWindow: true}).then((tabs) => {
console.log(tabs[0].url);
});
Summary
webextensions-examples is a collection of sample WebExtension projects, while webextension-polyfill is a compatibility library. The former is excellent for learning and reference, offering diverse, practical examples. However, it doesn't provide cross-browser support like webextension-polyfill does. Developers looking for ready-to-use examples might prefer webextensions-examples, while those seeking a consistent API across browsers would benefit more from webextension-polyfill.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
WebExtension browser
API Polyfill
This library allows extensions that use the Promise-based WebExtension/BrowserExt API being standardized by the W3 Browser Extensions group to run on Google Chrome with minimal or no changes.
This library doesn't (and it is not going to) polyfill API methods or options that are missing on Chrome but natively provided on Firefox, and so the extension has to do its own "runtime feature detection" in those cases (and then eventually polyfill the missing feature on its own or enable/disable some of the features accordingly).
Table of contents
- Supported Browsers
- Installation
- Basic Setup
- Using the Promise-based APIs
- Examples
- Usage with TypeScript
- Known Limitations and Incompatibilities
- Contributing to this project
Supported Browsers
Browser | Support Level |
---|---|
Chrome | Officially Supported (with automated tests) |
Firefox | Officially Supported as a NO-OP (with automated tests for comparison with the behaviors on Chrome) |
Opera / Edge (>=79.0.309) | Unofficially Supported as a Chrome-compatible target (but not explicitly tested in automation) |
The polyfill is being tested explicitly (with automated tests that run on every pull request) on officially supported browsers (that are currently the last stable versions of Chrome and Firefox).
On Firefox, this library is actually acting as a NO-OP: it detects that the browser
API object is already defined
and it does not create any custom wrappers.
Firefox is still included in the automated tests, to ensure that no wrappers are being created when running on Firefox,
and for comparison with the behaviors implemented by the library on Chrome.
Installation
A new version of the library is built from this repository and released as an npm package.
The npm package is named after this repo: webextension-polyfill.
For the extension that already include a package.json file, the last released version of this library can be quickly installed using:
npm install --save-dev webextension-polyfill
Inside the dist/
directory of the npm package, there are both the minified and non-minified builds (and their related source map files):
- node_modules/webextension-polyfill/dist/browser-polyfill.js
- node_modules/webextension-polyfill/dist/browser-polyfill.min.js
For extensions that do not include a package.json file and/or prefer to download and add the library directly into their own code repository, all the versions released on npm are also available for direct download from unpkg.com:
and linked to the Github releases:
Basic Setup
In order to use the polyfill, it must be loaded into any context where browser
APIs are accessed. The most common cases
are background and content scripts, which can be specified in manifest.json
(make sure to include the browser-polyfill.js
script before any other scripts that use it):
{
// ...
"background": {
"scripts": [
"browser-polyfill.js",
"background.js"
]
},
"content_scripts": [{
// ...
"js": [
"browser-polyfill.js",
"content.js"
]
}]
}
For HTML documents, such as browserAction
popups, or tab pages, it must be
included more explicitly:
<!DOCTYPE html>
<html>
<head>
<script type="application/javascript" src="browser-polyfill.js"></script>
<script type="application/javascript" src="popup.js"></script>
</head>
<!-- ... -->
</html>
And for dynamically-injected content scripts loaded by tabs.executeScript
,
it must be injected by a separate executeScript
call, unless it has
already been loaded via a content_scripts
declaration in
manifest.json
:
browser.tabs.executeScript({file: "browser-polyfill.js"});
browser.tabs.executeScript({file: "content.js"}).then(result => {
// ...
});
Basic Setup with ES6 module loader
The polyfill can also be loaded using the native ES6 module loader available in the recent browsers versions.
Be aware that the polyfill module does not export the browser
API object,
but defines the browser
object in the global namespace (i.e. window
).
<!DOCTYPE html>
<html>
<head>
<script type="module" src="browser-polyfill.js"></script>
<script type="module" src="background.js"></script>
</head>
<!-- ... -->
</html>
// In background.js (loaded after browser-polyfill.js) the `browser`
// API object is already defined and provides the promise-based APIs.
browser.runtime.onMessage.addListener(...);
Basic Setup with module bundlers
This library is built as a UMD module (Universal Module Definition), and so it can also be used with module bundlers (and explicitly tested on both webpack and browserify) or AMD module loaders.
src/background.js:
var browser = require("webextension-polyfill");
browser.runtime.onMessage.addListener(async (msg, sender) => {
console.log("BG page received message", msg, "from", sender);
console.log("Stored data", await browser.storage.local.get());
});
browser.browserAction.onClicked.addListener(() => {
browser.tabs.executeScript({file: "content.js"});
});
src/content.js:
var browser = require("webextension-polyfill");
browser.storage.local.set({
[window.location.hostname]: document.title,
}).then(() => {
browser.runtime.sendMessage(`Saved document title for ${window.location.hostname}`);
});
By using require("webextension-polyfill")
, the module bundler will use the non-minified version of this library, and the extension is supposed to minify the entire generated bundles as part of its own build steps.
If the extension doesn't minify its own sources, it is still possible to explicitly ask the module bundler to use the minified version of this library, e.g.:
var browser = require("webextension-polyfill/dist/browser-polyfill.min");
...
Usage with webpack without bundling
The previous section explains how to bundle webextension-polyfill
in each script. An alternative method is to include a single copy of the library in your extension, and load the library as shown in Basic Setup. You will need to install copy-webpack-plugin:
npm install --save-dev copy-webpack-plugin
In webpack.config.js
, import the plugin and configure it this way. It will copy the minified file into your output folder, wherever your other webpack files are generated.
const CopyWebpackPlugin = require('copy-webpack-plugin');
module.exports = {
/* Your regular webpack config, probably including something like this:
output: {
path: path.join(__dirname, 'distribution'),
filename: '[name].js'
},
*/
plugins: [
new CopyWebpackPlugin({
patterns: [{
from: 'node_modules/webextension-polyfill/dist/browser-polyfill.js',
}],
})
]
}
And then include the file in each context, using the manifest.json
just like in Basic Setup.
Using the Promise-based APIs
The Promise-based APIs in the browser
namespace work, for the most part,
very similarly to the callback-based APIs in Chrome's chrome
namespace.
The major differences are:
-
Rather than receiving a callback argument, every async function returns a
Promise
object, which resolves or rejects when the operation completes. -
Rather than checking the
chrome.runtime.lastError
property from every callback, code which needs to explicitly deal with errors registers a separate Promise rejection handler. -
Rather than receiving a
sendResponse
callback to send a response,onMessage
listeners simply return a Promise whose resolution value is used as a reply. -
Rather than nesting callbacks when a sequence of operations depend on each other, Promise chaining is generally used instead.
-
The resulting Promises can be also used with
async
andawait
, rather than dealt with directly.
Examples
The following code will retrieve a list of URLs patterns from the storage
API, retrieve a list of tabs which match any of them, reload each of those
tabs, and notify the user that is has been done:
browser.storage.local.get("urls").then(({urls}) => {
return browser.tabs.query({url: urls});
}).then(tabs => {
return Promise.all(
Array.from(tabs, tab => browser.tabs.reload(tab.id))
);
}).then(() => {
return browser.notifications.create({
type: "basic",
iconUrl: "icon.png",
title: "Tabs reloaded",
message: "Your tabs have been reloaded",
});
}).catch(error => {
console.error(`An error occurred while reloading tabs: ${error.message}`);
});
Or, using an async function:
async function reloadTabs() {
try {
let {urls} = await browser.storage.local.get("urls");
let tabs = await browser.tabs.query({url: urls});
await Promise.all(
Array.from(tabs, tab => browser.tabs.reload(tab.id))
);
await browser.notifications.create({
type: "basic",
iconUrl: "icon.png",
title: "Tabs reloaded",
message: "Your tabs have been reloaded",
});
} catch (error) {
console.error(`An error occurred while reloading tabs: ${error.message}`);
}
}
It's also possible to use Promises effectively using two-way messaging. Communication between a background page and a tab content script, for example, looks something like this from the background page side:
browser.tabs.sendMessage(tabId, "get-ids").then(results => {
processResults(results);
});
And like this from the content script:
browser.runtime.onMessage.addListener(msg => {
if (msg == "get-ids") {
return browser.storage.local.get("idPattern").then(({idPattern}) => {
return Array.from(document.querySelectorAll(idPattern),
elem => elem.textContent);
});
}
});
or:
browser.runtime.onMessage.addListener(async function(msg) {
if (msg == "get-ids") {
let {idPattern} = await browser.storage.local.get("idPattern");
return Array.from(document.querySelectorAll(idPattern),
elem => elem.textContent);
}
});
Or vice versa.
Usage with TypeScript
There are multiple projects that add TypeScript support to your web-extension project:
Project | Description |
---|---|
@types/webextension-polyfill | Types and JS-Doc are automatically generated from the mozilla schema files, so it is always up-to-date with the latest APIs. Formerly known as webextension-polyfill-ts. |
@types/chrome | Manually maintained types and JS-Doc. Only contains types for chrome extensions though! |
Known Limitations and Incompatibilities
This library tries to minimize the amount of "special handling" that a cross-browser extension has to do to be able to run on the supported browsers from a single codebase, but there are still cases when polyfillling the missing or incompatible behaviors or features is not possible or out of the scope of this polyfill.
This section aims to keep track of the most common issues that an extension may have.
No callback supported by the Promise-based APIs on Chrome
While some of the asynchronous API methods in Firefox (the ones that return a promise) also support the callback parameter (mostly as a side effect of the backward compatibility with the callback-based APIs available on Chrome), the Promise-based APIs provided by this library do not support the callback parameter (See "#102 Cannot call browser.storage.local.get with callback").
No promise returned on Chrome for some API methods
This library takes its knowledge of the APIs to wrap and their signatures from a metadata JSON file: api-metadata.json.
If an API method is not yet included in this "API metadata" file, it will not be recognized. Promises are not supported for unrecognized APIs, and callbacks have to be used for them.
Chrome-only APIs have no promise version, because extensions that use such APIs would not be compatible with Firefox.
File an issue in this repository for API methods that support callbacks in Chrome and Firefox but are currently missing from the "API metadata" file.
Issues that happen only when running on Firefox
When an extension that uses this library doesn't behave as expected on Firefox, it is almost never an issue in this polyfill, but an issue with the native implementation in Firefox.
"Firefox only" issues should be reported upstream on Bugzilla:
API methods or options that are only available when running in Firefox
This library does not provide any polyfill for API methods and options that are only available on Firefox, and they are actually considered out of the scope of this library.
tabs.executeScript
On Firefox browser.tabs.executeScript
returns a promise which resolves to the result of the content script code that has been executed, which can be an immediate value or a Promise.
On Chrome, the browser.tabs.executeScript
API method as polyfilled by this library also returns a promise which resolves to the result of the content script code, but only immediate values are supported.
If the content script code result is a Promise, the promise returned by browser.tabs.executeScript
will be resolved to undefined
.
MSEdge support
MSEdge versions >= 79.0.309 are unofficially supported as a Chrome-compatible target (as for Opera or other Chrome-based browsers that also support extensions).
MSEdge versions older than 79.0.309 are unsupported, for extension developers that still have to work on extensions for older MSEdge versions, the MSEdge --ms-preload
manifest key and the Microsoft Edge Extension Toolkit's Chrome API bridge can be used to be able to load the webextension-polyfill without any MSEdge specific changes.
The following Github repository provides some additional detail about this strategy and a minimal test extension that shows how to put it together:
Contributing to this project
Read the contributing section for additional information about how to build the library from this repository and how to contribute and test changes.
Top Related Projects
Example Firefox add-ons created using the WebExtensions API
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot