Top Related Projects
RedisJSON - a JSON data type for Redis
Redis Node.js client
🚀 A robust, performance-focused, and full-featured Redis client for Node.js.
MongoDB object modeling designed to work in an asynchronous environment.
ORM for TypeScript and JavaScript. Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms.
Quick Overview
Redis OM Node.js is an object mapping library for Redis, designed to work with Redis Stack. It provides a high-level abstraction for working with Redis data structures, allowing developers to interact with Redis using familiar object-oriented patterns in Node.js applications.
Pros
- Simplifies Redis data modeling and querying with an intuitive API
- Supports advanced Redis features like full-text search and JSON document storage
- Provides type safety and autocompletion through TypeScript definitions
- Offers seamless integration with Redis Stack modules
Cons
- Requires Redis Stack, which may not be available in all hosting environments
- Learning curve for developers new to object mapping concepts
- Limited to Node.js applications, not suitable for other programming languages
- May introduce additional overhead compared to raw Redis commands
Code Examples
- Defining a schema:
import { Entity, Schema } from 'redis-om';
class Person extends Entity {}
const personSchema = new Schema(Person, {
name: { type: 'string' },
age: { type: 'number' },
skills: { type: 'string[]' }
});
- Creating and saving an entity:
const person = await repository.createAndSave({
name: 'John Doe',
age: 30,
skills: ['JavaScript', 'Node.js']
});
- Querying entities:
const adults = await repository.search()
.where('age').gt(18)
.and('skills').contains('Node.js')
.return.all();
Getting Started
- Install Redis OM Node.js:
npm install redis-om
- Connect to Redis and create a repository:
import { Client } from 'redis-om';
import { createClient } from 'redis';
const redis = createClient();
await redis.connect();
const client = await new Client().use(redis);
const repository = client.fetchRepository(personSchema);
await repository.createIndex();
- Start using Redis OM to interact with your data:
// Create and save a new person
const john = await repository.createAndSave({
name: 'John Doe',
age: 30,
skills: ['Redis', 'Node.js']
});
// Retrieve a person by ID
const retrievedJohn = await repository.fetch(john.entityId);
// Search for people
const nodeDevelopers = await repository.search()
.where('skills').contains('Node.js')
.return.all();
Competitor Comparisons
RedisJSON - a JSON data type for Redis
Pros of RedisJSON
- Native JSON support in Redis, allowing for efficient storage and manipulation of JSON data
- Supports complex JSON operations and queries directly within Redis
- Better performance for JSON-specific operations compared to generic Redis commands
Cons of RedisJSON
- Requires installation of a separate Redis module
- Limited to JSON data structures, less flexible for other data types
- May have a steeper learning curve for developers unfamiliar with Redis modules
Code Comparison
RedisJSON:
JSON.SET user:1 . '{"name":"John", "age":30, "city":"New York"}'
JSON.GET user:1 name
JSON.NUMINCRBY user:1 age 5
redis-om-node:
const user = new User({ name: 'John', age: 30, city: 'New York' });
await repository.save(user);
const name = await repository.fetch(user.id).name;
user.age += 5;
await repository.save(user);
Summary
RedisJSON provides native JSON support within Redis, offering better performance for JSON operations. However, it requires a separate module installation and is limited to JSON data. redis-om-node, on the other hand, offers a more flexible Object-Mapping approach for Redis, supporting various data types and providing a more familiar programming model for Node.js developers. The choice between the two depends on specific project requirements and developer preferences.
Redis Node.js client
Pros of node-redis
- Lower-level API providing more direct control over Redis operations
- Lightweight and faster for simple use cases
- Wider adoption and community support
Cons of node-redis
- Requires more boilerplate code for complex operations
- Lacks built-in object mapping and schema validation
Code Comparison
node-redis:
const client = redis.createClient();
await client.connect();
await client.set('key', 'value');
const value = await client.get('key');
redis-om-node:
const schema = new Schema(Person, {
name: { type: 'string' },
age: { type: 'number' }
});
const repository = new Repository(schema, client);
const person = await repository.createAndSave({
name: 'John Doe',
age: 30
});
Key Differences
- redis-om-node provides a higher-level abstraction with object mapping and schema validation
- node-redis offers more flexibility for custom Redis operations
- redis-om-node simplifies complex data structures and relationships
- node-redis has a steeper learning curve for advanced use cases
Use Cases
- Choose node-redis for simple key-value operations or when direct control over Redis commands is needed
- Opt for redis-om-node when working with complex data models or requiring object-relational mapping features
🚀 A robust, performance-focused, and full-featured Redis client for Node.js.
Pros of ioredis
- More mature and widely adopted project with a larger community
- Supports more Redis commands and features out of the box
- Better performance for raw Redis operations
Cons of ioredis
- Lacks built-in object mapping and schema validation
- Requires more boilerplate code for complex data structures
- Less abstraction for high-level operations on Redis data
Code Comparison
ioredis:
const Redis = require("ioredis");
const redis = new Redis();
await redis.set("key", "value");
const value = await redis.get("key");
redis-om-node:
const { Client } = require("redis-om");
const client = await new Client().open();
const repository = client.fetchRepository(schema);
await repository.save({ id: "1", name: "John" });
const entity = await repository.fetch("1");
Summary
ioredis is a robust, low-level Redis client with excellent performance and wide command support. redis-om-node, on the other hand, provides a higher-level abstraction with object mapping and schema validation, making it easier to work with complex data structures in Redis. While ioredis offers more flexibility and control, redis-om-node simplifies Redis interactions for object-oriented programming paradigms.
MongoDB object modeling designed to work in an asynchronous environment.
Pros of Mongoose
- Mature and widely adopted ODM for MongoDB with extensive documentation
- Rich feature set including schema validation, middleware, and population
- Large community and ecosystem of plugins
Cons of Mongoose
- Steeper learning curve due to more complex API and features
- Potential performance overhead for simple operations
- Tightly coupled with MongoDB, limiting database flexibility
Code Comparison
Mongoose:
const userSchema = new mongoose.Schema({
name: String,
email: { type: String, required: true, unique: true },
age: Number
});
const User = mongoose.model('User', userSchema);
Redis OM Node:
const userSchema = new Schema(User, {
name: { type: 'string' },
email: { type: 'string', indexed: true },
age: { type: 'number' }
});
const userRepository = client.fetchRepository(userSchema);
Both libraries provide schema definition and model creation, but Mongoose offers more built-in features for validation and indexing. Redis OM Node has a simpler API and is designed specifically for Redis, while Mongoose is more feature-rich but MongoDB-specific.
ORM for TypeScript and JavaScript. Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms.
Pros of TypeORM
- Supports multiple databases (MySQL, PostgreSQL, MongoDB, etc.)
- More mature and feature-rich ORM with a larger community
- Provides advanced features like migrations and query builders
Cons of TypeORM
- Steeper learning curve due to its extensive feature set
- Can be overkill for simple projects or when working with a single database
- Performance overhead for complex queries compared to raw SQL
Code Comparison
Redis OM Node:
const repository = new Repository(Person, client);
const person = await repository.createAndSave({
firstName: 'John',
lastName: 'Doe',
age: 30
});
TypeORM:
const person = new Person();
person.firstName = 'John';
person.lastName = 'Doe';
person.age = 30;
await repository.save(person);
Summary
TypeORM is a versatile ORM supporting multiple databases, offering advanced features and a large community. It's suitable for complex projects but may be overwhelming for simpler ones. Redis OM Node is specifically designed for Redis, providing a simpler API and better performance for Redis-specific use cases. TypeORM offers more flexibility across databases, while Redis OM Node excels in Redis-centric applications with a more straightforward approach to data modeling and querying.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
Object mapping, and more, for Redis and Node.js. Written in TypeScript.
Redis OM for Node.js makes it easy to model Redis data in your Node.js applications.
Redis OM .NET | Redis OM Node.js | Redis OM Python | Redis OM Spring
Table of contents
- Redis OM for Node.js
- Getting Started
- Connect to Redis with Node Redis
- Entities and Schemas
- Reading, Writing, and Removing with Repository
- Searching
- Advanced Stuff
- Documentation
- Troubleshooting
- Contributing
Redis OM for Node.js
Redis OM (pronounced REDiss OHM) makes it easy to add Redis to your Node.js application by mapping the Redis data structures you know and love to simple JavaScript objects. No more pesky, low-level commands, just pure code with a fluent interface.
Define a schema:
const schema = new Schema('album', {
artist: { type: 'string' },
title: { type: 'text' },
year: { type: 'number' }
})
Create a JavaScript object and save it:
const album = {
artist: "Mushroomhead",
title: "The Righteous & The Butterfly",
year: 2014
}
await repository.save(album)
Search for matching entities:
const albums = await repository.search()
.where('artist').equals('Mushroomhead')
.and('title').matches('butterfly')
.and('year').is.greaterThan(2000)
.return.all()
Pretty cool, right? Read on for details.
â ï¸ Warning: This Version Has Breaking Changes from 0.3.6
Redis OM 0.4 is new, improved, and includes breaking changes. If you're trying it for the first time, no worries. Just follow what's in this README and you'll be fine.
However, you might be a user of Redis OM already. If that is the case, you'll want to review this document to understand those changes.
Of course, you don't have to upgrade. If this is you, you'll want to check out the README for that version over on NPM.
However, I hope you choose to try the new version. It has many changes that have been frequently requested that are documented in the CHANGELOG. And more, non-breaking changes will follow these.
Getting Started
First things first, get yourself a Node.js project. There are lots of ways to do this, but I'm gonna go with a classic:
$ npm init
Once you have that sweet, sweet package.json
, let's add our newest favorite package to it:
$ npm install redis-om
Redis OM for Node.js uses Node Redis. So you should install that too:
$ npm install redis
And, of course, you'll need some Redis, preferably Redis Stack as it comes with RediSearch and RedisJSON ready to go. The easiest way to do this is to set up a free Redis Cloud instance. But, you can also use Docker:
$ docker run -d --name redis-stack -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
Excellent. Setup done. Let's write some code!
Connect to Redis with Node Redis
Before you can use Redis OM, you need to connect to Redis with Node Redis. Here's how you do that, stolen straight from the top of the Node Redis README:
import { createClient } from 'redis'
const redis = createClient()
redis.on('error', (err) => console.log('Redis Client Error', err));
await redis.connect()
Node Redis is a powerful piece of software with lots and lots of capabilities. Its details are way beyond the scope of this README. But, if you're curiousâor if you need that powerâyou can find all the info in the Node Redis documentation.
Regardless, once you have a connection to Redis you can use it to execute Redis commands:
const aString = await redis.ping() // 'PONG'
const aNumber = await redis.hSet('foo', 'alfa', '42', 'bravo', '23') // 2
const aHash = await redis.hGetAll('foo') // { alfa: '42', bravo: '23' }
You might not need to do this, but it's always handy to have the option. When you're done with a Redis connection, you can let the server know by calling .quit
:
await redis.quit()
Redis Connection Strings
By default, Node Redis connects to localhost
on port 6379
. This is, of course, configurable. Just pass in a url with the hostname and port that you want to use:
const redis = createClient({ url: 'redis://alice:foobared@awesome.redis.server:6380' })
The basic format for this URL is:
redis://username:password@host:port
This will probably cover most scenarios, but if you want something more, the full specification for the URL is defined with the IANA. And yes, there is a TLS version as well.
Node Redis has lots of other ways you can create a connection. You can use discrete parameters, UNIX sockets, and all sorts of cool things. Details can be found in the client configuration guide for Node Redis and the clusterting guide.
Entities and Schemas
Redis OM is all about saving, reading, and deleting entities. An Entity is just data in a JavaScript object that you want to save or retrieve from Redis. Almost any JavaScript object is a valid Entity
.
Schemas define fields that might be on an Entity
. It includes a field's type, how it is stored internally in Redis, and how to search on it if you are using RediSearch. By default, they are mapped to JSON documents using RedisJSON, but you can change it to use Hashes if want (more on that later).
Ok. Let's start doing some object mapping and create a Schema
:
import { Schema } from 'redis-om'
const albumSchema = new Schema('album', {
artist: { type: 'string' },
title: { type: 'text' },
year: { type: 'number' },
genres: { type: 'string[]' },
songDurations: { type: 'number[]' },
outOfPublication: { type: 'boolean' }
})
const studioSchema = new Schema('studio', {
name: { type: 'string' },
city: { type: 'string' },
state: { type: 'string' },
location: { type: 'point' },
established: { type: 'date' }
})
The first argument is the Schema
name. It defines the key name prefix that entities stored in Redis will have. It should be unique for your particular instance of Redis and probably meaningful to what you're doing. Here we have selected album
for our album data and studio
for data on recording studios. Imaginative, I know.
The second argument defines fields that might be stored in that key. The property name is the name of the field that you'll be referencing in your Redis OM queries. The type property tells Redis OM what sort of data is in that field. Valid types are: string
, number
, boolean
, string[]
, number[]
, date
, point
, and text
.
The first three types do exactly what you thinkâthey define a field that is a String, a Number, or a Boolean. string[]
and number[]
do what you'd think as well, specifically describing an Array of Strings or Numbers respectively.
date
is a little different, but still more or less what you'd expect. It describes a property that contains a Date and can be set using not only a Date but also a String containing an ISO 8601 date or a number with the UNIX epoch time in seconds (NOTE: the JavaScript Date object is specified in milliseconds).
A point
defines a point somewhere on the globe as a longitude and a latitude. It is expressed as a simple object with longitude
and latitude
properties. Like this:
const point = { longitude: 12.34, latitude: 56.78 }
A text
field is a lot like a string
. If you're just reading and writing objects, they are identical. But if you want to search on them, they are very, very different. I'll cover that in detail when I talk about searching but the tl;dr is that string
fields can only be matched on their exact value and are best for keys and discrete dataâlike postal codes or status indicatorsâwhile text
fields have full-text search enabled on them, are optimized for human-readable text, and can take advantage of stemming and stop words.
JSON and Hashes
As I mentioned earlier, by default Redis OM stores your entities in JSON documents using RedisJSON. You can make this explicit in code if you like:
const albumSchema = new Schema('album', {
artist: { type: 'string' },
title: { type: 'string' },
year: { type: 'number' },
genres: { type: 'string[]' },
songDurations: { type: 'number[]' },
outOfPublication: { type: 'boolean' }
}, {
dataStructure: 'JSON'
})
But you can also store your entities as Hashes instead. Just change the dataStructure
property to reflect it:
const albumSchema = new Schema('album', {
artist: { type: 'string' },
title: { type: 'string' },
year: { type: 'number' },
genres: { type: 'string[]' },
outOfPublication: { type: 'boolean' }
}, {
dataStructure: 'HASH'
})
And that's it.
Of course, Hashes and JSON are somewhat different data structures. Hashes are flat with fields containing values. JSON documents, however, are trees and can have depth andâmost excitinglyâcan be nested. This difference is reflected in how Redis OM maps data to entities and how you configure your Schema.
Note that I have not included the
songDurations
in the Hash. This is becausenumber[]
is only possible when working with JSON, it will generate an error if you try to use it with Hashes.
Configuring JSON
When you store your entities as JSON, the path to the properties in your JSON document and your JavaScript object default to the name of your property in the schema. In the above example, this would result in a document that looks like this:
{
"artist": "Mushroomhead",
"title": "The Righteous & The Butterfly",
"year": 2014,
"genres": [ "metal" ],
"songDurations": [ 204, 290, 196, 210, 211, 105, 244, 245, 209, 252, 259, 200, 215, 219 ],
"outOfPublication": true
}
However, you might not want your JavaScript object and your JSON to map this way. So, you can provide a path
option in your schema that contains a JSONPath pointing to where that field actually exists in the JSON and your entity. For example, we might want to store some of the album's data inside of an album property like this:
{
"album": {
"artist": "Mushroomhead",
"title": "The Righteous & The Butterfly",
"year": 2014,
"genres": [ "metal" ],
"songDurations": [ 204, 290, 196, 210, 211, 105, 244, 245, 209, 252, 259, 200, 215, 219 ]
},
"outOfPublication": true
}
To do this, we'll need to specify the path
property for the nested fields in the schema:
const albumSchema = new Schema('album', {
artist: { type: 'string', path: '$.album.artist' },
title: { type: 'string', path: '$.album.title' },
year: { type: 'number', path: '$.album.year' },
genres: { type: 'string[]', path: '$.album.genres[*]' },
songDurations: { type: 'number[]', path: '$.album.songDurations[*]' },
outOfPublication: { type: 'boolean' }
})
There are two things to note here:
- We haven't specified a path for
outOfPublication
as it's still in the root of the document. It defaults to$.outOfPublication
. - Our
genres
field points to astring[]
. When using astring[]
the JSONPath must return an array. If it doesn't, an error will be generated. - Same for our
songDurations
.
Configuring Hashes
When you store your entities as Hashes there is no nestingâall the entities are flat. In Redis, the properties on your entity are stored in fields inside a Hash. The default name for each field is the name of the property in your schema and this is the name that will be used in your entities. So, for the following schema:
const albumSchema = new Schema('album', {
artist: { type: 'string' },
title: { type: 'string' },
year: { type: 'number' },
genres: { type: 'string[]' },
outOfPublication: { type: 'boolean' }
}, {
dataStructure: 'HASH'
})
In your code, your entities would look like this:
{
artist: 'Mushroomhead',
title: 'The Righteous & The Butterfly',
year: 2014,
genres: [ 'metal' ],
outOfPublication: true
}
Inside Redis, your Hash would be stored like this:
Field | Value |
---|---|
artist | Mushroomhead |
title | The Righteous & The Butterfly |
year | 2014 |
genres | metal |
outOfPublication | 1 |
However, you might not want the names of your fields and the names of the properties on your entity to be exactly the same. Maybe you've got some existing data with existing names or something.
Fear not! You can change the name of the field used by Redis with the field
property:
const albumSchema = new Schema('album', {
artist: { type: 'string', field: 'album_artist' },
title: { type: 'string', field: 'album_title' },
year: { type: 'number', field: 'album_year' },
genres: { type: 'string[]' },
outOfPublication: { type: 'boolean' }
}, {
dataStructure: 'HASH'
})
With this configuration, your entities will remain unchanged and will still have properties for artist
, title
, year
, genres
, and outOfPublication
. But inside Redis, the field will have changed:
Field | Value |
---|---|
album_artist | Mushroomhead |
album_title | The Righteous & The Butterfly |
album_year | 2014 |
genres | metal |
outOfPublication | 1 |
Reading, Writing, and Removing with Repository
Now that we have a client and a schema, we have what we need to make a repository. A repository provides the means to write, read, and remove entities. Creating a repository is pretty straightforwardâjust instantiate one with a schema and a client:
import { Repository } from 'redis-om'
const albumRepository = new Repository(albumSchema, redis)
const studioRepository = new Repository(studioSchema, redis)
Once we have a repository, we can use .save
to, well, save entities:
let album = {
artist: "Mushroomhead",
title: "The Righteous & The Butterfly",
year: 2014,
genres: [ 'metal' ],
songDurations: [ 204, 290, 196, 210, 211, 105, 244, 245, 209, 252, 259, 200, 215, 219 ],
outOfPublication: true
}
album = await albumRepository.save(album)
This saves your entity and returns a copy, a copy with some additional properties. The primary property we care about right now is the entity ID, which Redis OM will generate for you. However, this isn't stored and accessed like a typical property. After all, you might have a property in your data with a name that conflicts with the name Redis OM uses and that would create all sorts of problems.
So, Redis OM uses a Symbol to access it instead. You'll need to import this symbol from Redis OM:
import { EntityId } from 'redis-om'
Then you can access the entity ID using that symbol:
album = await albumRepository.save(album)
album[EntityId] // '01FJYWEYRHYFT8YTEGQBABJ43J'
The entity ID that Redis OM generates is a ULID and is a unique id representing that object. If you don't like using generated IDs for some reason and instead want to provide your own, you can totally do that:
album = await albumRepository.save('BWOMP', album)
Regardless, once you have an object's entity ID you can .fetch
with it:
const album = await albumRepository.fetch('01FJYWEYRHYFT8YTEGQBABJ43J')
album.artist // "Mushroomhead"
album.title // "The Righteous & The Butterfly"
album.year // 2014
album.genres // [ 'metal' ]
album.songDurations // [ 204, 290, 196, 210, 211, 105, 244, 245, 209, 252, 259, 200, 215, 219 ]
album.outOfPublication // true
If you call .save
with an entity that already has an entity ID, probably because you fetched it, .save
will update it instead of creating a new Entity
:
let album = await albumRepository.fetch('01FJYWEYRHYFT8YTEGQBABJ43J')
album.genres = [ 'metal', 'nu metal', 'avantgarde' ]
album.outOfPublication = false
album = await albumRepository.save(album)
You can even use .save
to clone an Entity
. Just pass in a new entity ID to .save
and it'll save the data to that entity ID:
const album = await albumRepository.fetch('01FJYWEYRHYFT8YTEGQBABJ43J')
album.genres = [ 'metal', 'nu metal', 'avantgarde' ]
album.outOfPublication = false
const clonedEntity = await albumRepository.save('BWOMP', album)
And, of course, you need to be able to delete things. Use .remove
to do that:
await albumRepository.remove('01FJYWEYRHYFT8YTEGQBABJ43J')
You can also set an entity to expire after a certain number of seconds. Redis will automatically remove that entity when the time's up. Use the .expire
method to do this:
const ttlInSeconds = 12 * 60 * 60 // 12 hours
await albumRepository.expire('01FJYWEYRHYFT8YTEGQBABJ43J', ttlInSeconds)
Missing Entities and Null Values
Redis, and by extension Redis OM, doesn't differentiate between missing and nullâparticularly for Hashes. Missing fields in Redis Hashes are returned as null
. Missing keys also return null
. So, if you fetch an entity that doesn't exist, it will happily return you an empty entity, complete with the provided entity ID:
const album = await albumRepository.fetch('TOTALLY_BOGUS')
album[EntityId] // 'TOTALLY_BOGUS'
album.artist // undefined
album.title // undefined
album.year // undefined
album.genres // undefined
album.outOfPublication // undefined
Conversely, if you remove all the properties on an entity and then save it, it will remove the entity from Redis:
const album = await albumRepository.fetch('01FJYWEYRHYFT8YTEGQBABJ43J')
delete album.artist
delete album.title
delete album.year
delete album.genres
delete album.outOfPublication
const entityId = await albumRepository.save(album)
const exists = await redis.exists('album:01FJYWEYRHYFT8YTEGQBABJ43J') // 0
It does this because Redis doesn't distinguish between missing and null. You could have an entity that is empty. Or you could not have an entity at all. Redis doesn't know which is your intention, and so always returns something when you call .fetch
.
Searching
Using RediSearch with Redis OM is where the power of this fully armed and operational battle station starts to become apparent. If you have RediSearch installed on your Redis server you can use the search capabilities of Redis OM. This enables commands like:
const albums = await albumRepository.search()
.where('artist').equals('Mushroomhead')
.and('title').matches('butterfly')
.and('year').is.greaterThan(2000)
.return.all()
Let's explore this in full.
Build the Index
To use search you have to build an index. If you don't, you'll get errors. To build an index, just call .createIndex
on your repository:
await albumRepository.createIndex();
If you change your schema, no worries. Redis OM will automatically rebuild the index for you. Just call .createIndex
again. And don't worry if you call .createIndex
when your schema hasn't changed. Redis OM will only rebuild your index if the schema has changed. So, you can safely use it in your startup code.
However, if you have a lot of data, rebuilding an index can take some time. So, you might want to explicitly manage the building and rebuilding of your indices in some sort of deployment code script thing. To support those devops sorts of things, Redis OM includes a .dropIndex
method to explicitly remove an index without rebuilding it:
await albumRepository.dropIndex();
You probably won't use this in your application, but if you come up with a cool use for it, I'd love to hear about it!
Finding All The Things (and Returning Them)
Once you have an index created (or recreated) you can search. The most basic search is to just return all the things. This will return all of the albums that you've put in Redis:
const albums = await albumRepository.search().return.all()
Pagination
It's possible you have a lot of albums; I know I do. In that case, you can page through the results. Just pass in the zero-based offset and the number of results you want:
const offset = 100
const count = 25
const albums = await albumRepository.search().return.page(offset, count)
Don't worry if your offset is greater than the number of entities. If it is, you just get an empty array back. No harm, no foul.
First Things First
Sometimes you only have one album. Or maybe you only care about the first album you find. You can easily grab the first result of your search with .first
:
const firstAlbum = await albumRepository.search().return.first();
Note: If you have no albums, this will return null
. And I feel sorry for you.
Counting
Sometimes you just want to know how many albums you have. For that, you can call .count
:
const count = await albumRepository.search().return.count()
Finding Specific Things
It's fine and dandy to return all the things. But that's not what you usually want to do. You want to find specific things. Redis OM will let you find those specific things by strings, numbers, and booleans. You can also search for strings that are in an array, perform full-text search within strings, search by date, and search for points on the globe within a particular area.
And it does it with a fluent interface that allowsâbut does not demandâcode that reads like a sentence. See below for exhaustive examples of all the syntax available to you.
Searching on Strings
When you set the field type in your schema to string
, you can search for a particular value in that string. You can also search for partial strings (no shorter than two characters) that occur at the beginning, middle, or end of a string. If you need to search strings in a more sophisticated manner, you'll want to look at the text
type and search it using the Full-Text Search syntax.
let albums
// find all albums where the artist is 'Mushroomhead'
albums = await albumRepository.search().where('artist').eq('Mushroomhead').return.all()
// find all albums where the artist is *not* 'Mushroomhead'
albums = await albumRepository.search().where('artist').not.eq('Mushroomhead').return.all()
// find all albums using wildcards
albums = await albumRepository.search().where('artist').eq('Mush*').return.all()
albums = await albumRepository.search().where('artist').eq('*head').return.all()
albums = await albumRepository.search().where('artist').eq('*room*').return.all()
// fluent alternatives that do the same thing
albums = await albumRepository.search().where('artist').equals('Mushroomhead').return.all()
albums = await albumRepository.search().where('artist').does.equal('Mushroomhead').return.all()
albums = await albumRepository.search().where('artist').is.equalTo('Mushroomhead').return.all()
albums = await albumRepository.search().where('artist').does.not.equal('Mushroomhead').return.all()
albums = await albumRepository.search().where('artist').is.not.equalTo('Mushroomhead').return.all()
Searching on Numbers
When you set the field type in your schema to number
, you can store both integers and floating-point numbers. And you can search against it with all the comparisons you'd expect to see:
let albums
// find all albums where the year is ===, >, >=, <, and <= 1984
albums = await albumRepository.search().where('year').eq(1984).return.all()
albums = await albumRepository.search().where('year').gt(1984).return.all()
albums = await albumRepository.search().where('year').gte(1984).return.all()
albums = await albumRepository.search().where('year').lt(1984).return.all()
albums = await albumRepository.search().where('year').lte(1984).return.all()
// find all albums where the year is between 1980 and 1989 inclusive
albums = await albumRepository.search().where('year').between(1980, 1989).return.all()
// find all albums where the year is *not* ===, >, >=, <, and <= 1984
albums = await albumRepository.search().where('year').not.eq(1984).return.all()
albums = await albumRepository.search().where('year').not.gt(1984).return.all()
albums = await albumRepository.search().where('year').not.gte(1984).return.all()
albums = await albumRepository.search().where('year').not.lt(1984).return.all()
albums = await albumRepository.search().where('year').not.lte(1984).return.all()
// find all albums where year is *not* between 1980 and 1989 inclusive
albums = await albumRepository.search().where('year').not.between(1980, 1989);
// fluent alternatives that do the same thing
albums = await albumRepository.search().where('year').equals(1984).return.all()
albums = await albumRepository.search().where('year').does.equal(1984).return.all()
albums = await albumRepository.search().where('year').does.not.equal(1984).return.all()
albums = await albumRepository.search().where('year').is.equalTo(1984).return.all()
albums = await albumRepository.search().where('year').is.not.equalTo(1984).return.all()
albums = await albumRepository.search().where('year').greaterThan(1984).return.all()
albums = await albumRepository.search().where('year').is.greaterThan(1984).return.all()
albums = await albumRepository.search().where('year').is.not.greaterThan(1984).return.all()
albums = await albumRepository.search().where('year').greaterThanOrEqualTo(1984).return.all()
albums = await albumRepository.search().where('year').is.greaterThanOrEqualTo(1984).return.all()
albums = await albumRepository.search().where('year').is.not.greaterThanOrEqualTo(1984).return.all()
albums = await albumRepository.search().where('year').lessThan(1984).return.all()
albums = await albumRepository.search().where('year').is.lessThan(1984).return.all()
albums = await albumRepository.search().where('year').is.not.lessThan(1984).return.all()
albums = await albumRepository.search().where('year').lessThanOrEqualTo(1984).return.all()
albums = await albumRepository.search().where('year').is.lessThanOrEqualTo(1984).return.all()
albums = await albumRepository.search().where('year').is.not.lessThanOrEqualTo(1984).return.all()
albums = await albumRepository.search().where('year').is.between(1980, 1989).return.all()
albums = await albumRepository.search().where('year').is.not.between(1980, 1989).return.all()
Searching on Booleans
You can search against fields that contain booleans if you defined a field type of boolean
in your schema:
let albums
// find all albums where outOfPublication is true
albums = await albumRepository.search().where('outOfPublication').true().return.all()
// find all albums where outOfPublication is false
albums = await albumRepository.search().where('outOfPublication').false().return.all()
You can negate boolean searches. This might seem odd, but if your field is null
, then it would match on a .not
query:
// find all albums where outOfPublication is false or null
albums = await albumRepository.search().where('outOfPublication').not.true().return.all()
// find all albums where outOfPublication is true or null
albums = await albumRepository.search().where('outOfPublication').not.false().return.all()
And, of course, there's lots of syntactic sugar to make this fluent:
albums = await albumRepository.search().where('outOfPublication').eq(true).return.all()
albums = await albumRepository.search().where('outOfPublication').equals(true).return.all()
albums = await albumRepository.search().where('outOfPublication').does.equal(true).return.all()
albums = await albumRepository.search().where('outOfPublication').is.equalTo(true).return.all()
albums = await albumRepository.search().where('outOfPublication').true().return.all()
albums = await albumRepository.search().where('outOfPublication').false().return.all()
albums = await albumRepository.search().where('outOfPublication').is.true().return.all()
albums = await albumRepository.search().where('outOfPublication').is.false().return.all()
albums = await albumRepository.search().where('outOfPublication').not.eq(true).return.all()
albums = await albumRepository.search().where('outOfPublication').does.not.equal(true).return.all()
albums = await albumRepository.search().where('outOfPublication').is.not.equalTo(true).return.all()
albums = await albumRepository.search().where('outOfPublication').is.not.true().return.all()
albums = await albumRepository.search().where('outOfPublication').is.not.false().return.all()
Searching on Dates
If you have a field type of date
in your schema, you can search on it using Dates, ISO 8601 formatted strings, or the UNIX epoch time in seconds:
studios = await studioRepository.search().where('established').on(new Date('2010-12-27')).return.all()
studios = await studioRepository.search().where('established').on('2010-12-27').return.all()
studios = await studioRepository.search().where('established').on(1293408000).return.all()
There are several date comparison methods to use. And they can be negated:
const date = new Date('2010-12-27')
const laterDate = new Date('2020-12-27')
studios = await studioRepository.search().where('established').on(date).return.all()
studios = await studioRepository.search().where('established').not.on(date).return.all()
studios = await studioRepository.search().where('established').before(date).return.all()
studios = await studioRepository.search().where('established').not.before(date).return.all()
studios = await studioRepository.search().where('established').after(date).return.all()
studios = await studioRepository.search().where('established').not.after(date).return.all()
studios = await studioRepository.search().where('established').onOrBefore(date).return.all()
studios = await studioRepository.search().where('established').not.onOrBefore(date).return.all()
studios = await studioRepository.search().where('established').onOrAfter(date).return.all()
studios = await studioRepository.search().where('established').not.onOrAfter(date).return.all()
studios = await studioRepository.search().where('established').between(date, laterDate).return.all()
studios = await studioRepository.search().where('established').not.between(date, laterDate).return.all()
More fluent variations work too:
const date = new Date('2010-12-27')
const laterDate = new Date('2020-12-27')
studios = await studioRepository.search().where('established').is.on(date).return.all()
studios = await studioRepository.search().where('established').is.not.on(date).return.all()
studios = await studioRepository.search().where('established').is.before(date).return.all()
studios = await studioRepository.search().where('established').is.not.before(date).return.all()
studios = await studioRepository.search().where('established').is.onOrBefore(date).return.all()
studios = await studioRepository.search().where('established').is.not.onOrBefore(date).return.all()
studios = await studioRepository.search().where('established').is.after(date).return.all()
studios = await studioRepository.search().where('established').is.not.after(date).return.all()
studios = await studioRepository.search().where('established').is.onOrAfter(date).return.all()
studios = await studioRepository.search().where('established').is.not.onOrAfter(date).return.all()
studios = await studioRepository.search().where('established').is.between(date, laterDate).return.all()
studios = await studioRepository.search().where('established').is.not.between(date, laterDate).return.all()
And, since dates are really just numbers, all the numeric comparisons work too:
const date = new Date('2010-12-27')
const laterDate = new Date('2020-12-27')
studios = await studioRepository.search().where('established').eq(date).return.all()
studios = await studioRepository.search().where('established').not.eq(date).return.all()
studios = await studioRepository.search().where('established').equals(date).return.all()
studios = await studioRepository.search().where('established').does.equal(date).return.all()
studios = await studioRepository.search().where('established').does.not.equal(date).return.all()
studios = await studioRepository.search().where('established').is.equalTo(date).return.all()
studios = await studioRepository.search().where('established').is.not.equalTo(date).return.all()
studios = await studioRepository.search().where('established').gt(date).return.all()
studios = await studioRepository.search().where('established').not.gt(date).return.all()
studios = await studioRepository.search().where('established').greaterThan(date).return.all()
studios = await studioRepository.search().where('established').is.greaterThan(date).return.all()
studios = await studioRepository.search().where('established').is.not.greaterThan(date).return.all()
studios = await studioRepository.search().where('established').gte(date).return.all()
studios = await studioRepository.search().where('established').not.gte(date).return.all()
studios = await studioRepository.search().where('established').greaterThanOrEqualTo(date).return.all()
studios = await studioRepository.search().where('established').is.greaterThanOrEqualTo(date).return.all()
studios = await studioRepository.search().where('established').is.not.greaterThanOrEqualTo(date).return.all()
studios = await studioRepository.search().where('established').lt(date).return.all()
studios = await studioRepository.search().where('established').not.lt(date).return.all()
studios = await studioRepository.search().where('established').lessThan(date).return.all()
studios = await studioRepository.search().where('established').is.lessThan(date).return.all()
studios = await studioRepository.search().where('established').is.not.lessThan(date).return.all()
studios = await studioRepository.search().where('established').lte(date).return.all()
studios = await studioRepository.search().where('established').not.lte(date).return.all()
studios = await studioRepository.search().where('established').lessThanOrEqualTo(date).return.all()
studios = await studioRepository.search().where('established').is.lessThanOrEqualTo(date).return.all()
studios = await studioRepository.search().where('established').is.not.lessThanOrEqualTo(date).return.all()
Searching String Arrays
If you have a field type of string[]
you can search for whole strings that are in that array:
let albums
// find all albums where genres contains the string 'rock'
albums = await albumRepository.search().where('genres').contain('rock').return.all()
// find all albums where genres contains the string 'rock', 'metal', or 'blues'
albums = await albumRepository.search().where('genres').containOneOf('rock', 'metal', 'blues').return.all()
// find all albums where genres does *not* contain the string 'rock'
albums = await albumRepository.search().where('genres').not.contain('rock').return.all()
// find all albums where genres does *not* contain the string 'rock', 'metal', and 'blues'
albums = await albumRepository.search().where('genres').not.containOneOf('rock', 'metal', 'blues').return.all()
// alternative syntaxes
albums = await albumRepository.search().where('genres').contains('rock').return.all()
albums = await albumRepository.search().where('genres').containsOneOf('rock', 'metal', 'blues').return.all()
albums = await albumRepository.search().where('genres').does.contain('rock').return.all()
albums = await albumRepository.search().where('genres').does.not.contain('rock').return.all()
albums = await albumRepository.search().where('genres').does.containOneOf('rock', 'metal', 'blues').return.all()
albums = await albumRepository.search().where('genres').does.not.containOneOf('rock', 'metal', 'blues').return.all()
Wildcards work here too:
albums = await albumRepository.search().where('genres').contain('*rock*').return.all()
Searching Arrays of Numbers
If you have a field of type number[]
, you can search on it just like a number
. If any number in the array matches your criteria, then it'll match and the document will be returned.
let albums
// find all albums where at least one song is at least 3 minutes long
albums = await albumRepository.search().where('songDuration').gte(180).return.all()
// find all albums where at least one song is at exactly 3 minutes long
albums = await albumRepository.search().where('songDuration').eq(180).return.all()
// find all albums where at least one song is between 3 and 4 minutes long
albums = await albumRepository.search().where('songDuration').between(180, 240).return.all()
I'm not going to include all the examples again. Just go check out the section on searching on numbers.
Full-Text Search
If you've defined a field with a type of text
in your schema, you can store text in it and perform full-text searches against it. Full-text search is different from how a string
is searched. With full-text search, you can look for words, partial words, fuzzy matches, and exact phrases within a body of text.
Full-text search is optimized for human-readable text and it's pretty clever. It understands that certain words (like a, an, or the) are common and ignores them. It understands how words relate to each other and so if you search for give, it matches gives, given, giving, and gave too. It ignores punctuation and whitespace.
Here are some examples of doing full-text search against some album titles:
let albums
// finds all albums where the title contains the word 'butterfly'
albums = await albumRepository.search().where('title').match('butterfly').return.all()
// finds all albums using fuzzy matching where the title contains a word which is within 3 Levenshtein distance of the word 'buterfly'
albums = await albumRepository.search().where('title').match('buterfly', { fuzzyMatching: true, levenshteinDistance: 3 }).return.all()
// finds all albums where the title contains the words 'beautiful' and 'children'
albums = await albumRepository.search().where('title').match('beautiful children').return.all()
// finds all albums where the title contains the exact phrase 'beautiful stories'
albums = await albumRepository.search().where('title').matchExact('beautiful stories').return.all()
If you want to search for a part of a word. To do it, just tack a *
on the beginning or end (or both) of your partial word and it'll match accordingly:
// finds all albums where the title contains a word that contains 'right'
albums = await albumRepository.search().where('title').match('*right*').return.all()
Do not combine partial-word searches or fuzzy matches with exact matches. Partial-word searches and fuzzy matches with exact matches are not compatible in RediSearch. If you try to exactly match a partial-word search or fuzzy match a partial-word search, you'll get an error.
// THESE WILL ERROR
albums = await albumRepository.search().where('title').matchExact('beautiful sto*').return.all()
albums = await albumRepository.search().where('title').matchExact('*buterfly', { fuzzyMatching: true, levenshteinDistance: 3 }).return.all()
As always, there are several alternatives to make this a bit more fluent and, of course, negation is available:
albums = await albumRepository.search().where('title').not.match('butterfly').return.all()
albums = await albumRepository.search().where('title').matches('butterfly').return.all()
albums = await albumRepository.search().where('title').does.match('butterfly').return.all()
albums = await albumRepository.search().where('title').does.not.match('butterfly').return.all()
albums = await albumRepository.search().where('title').exact.match('beautiful stories').return.all()
albums = await albumRepository.search().where('title').not.exact.match('beautiful stories').return.all()
albums = await albumRepository.search().where('title').exactly.matches('beautiful stories').return.all()
albums = await albumRepository.search().where('title').does.exactly.match('beautiful stories').return.all()
albums = await albumRepository.search().where('title').does.not.exactly.match('beautiful stories').return.all()
albums = await albumRepository.search().where('title').not.matchExact('beautiful stories').return.all()
albums = await albumRepository.search().where('title').matchesExactly('beautiful stories').return.all()
albums = await albumRepository.search().where('title').does.matchExactly('beautiful stories').return.all()
albums = await albumRepository.search().where('title').does.not.matchExactly('beautiful stories').return.all()
Searching on Points
RediSearch, and therefore Redis OM, both support searching by geographic location. You specify a point in the globe and a radius and it'll gleefully return all the entities within that radius:
let studios
// finds all the studios with 50 miles of downtown Cleveland
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).miles).return.all()
Note that coordinates are specified with the longitude first, and then the latitude. This might be the opposite of what you expect but is consistent with how Redis implements coordinates in RediSearch and with GeoSets.
If you don't want to rely on argument order, you can also specify longitude and latitude more explicitly:
// finds all the studios within 50 miles of downtown Cleveland using a point
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin({ longitude: -81.7758995, latitude: 41.4976393 }).radius(50).miles).return.all()
// finds all the studios within 50 miles of downtown Cleveland using longitude and latitude
studios = await studioRepository.search().where('location').inRadius(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
Radius can be in miles, feet, kilometers, and meters in all the spelling variations you could ever want:
// finds all the studios within 50 miles
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).miles).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).mile).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).mi).return.all()
// finds all the studios within 50 feet
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).feet).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).foot).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).ft).return.all()
// finds all the studios within 50 kilometers
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).kilometers).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).kilometer).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).km).return.all()
// finds all the studios within 50 meters
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).meters).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).meter).return.all()
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50).m).return.all()
If you don't specify the origin, Redis OM will use a longitude 0.0 and a latitude 0.0, also known as Null Island:
// finds all the studios within 50 miles of Null Island (probably ain't much there)
studios = await studioRepository.search().where('location').inRadius(
circle => circle.radius(50).miles).return.all()
If you don't specify the radius, it defaults to 1 and if you don't provide units, it defaults to meters:
// finds all the studios within 1 meter of downtown Cleveland
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393)).return.all()
// finds all the studios within 1 kilometer of downtown Cleveland
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).kilometers).return.all()
// finds all the studios within 50 meters of downtown Cleveland
studios = await studioRepository.search().where('location').inRadius(
circle => circle.origin(-81.7758995, 41.4976393).radius(50)).return.all()
And there are plenty of fluent variations to help make your code pretty:
studios = await studioRepository.search().where('location').not.inRadius(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
studios = await studioRepository.search().where('location').is.inRadius(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
studios = await studioRepository.search().where('location').is.not.inRadius(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
studios = await studioRepository.search().where('location').not.inCircle(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
studios = await studioRepository.search().where('location').is.inCircle(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
studios = await studioRepository.search().where('location').is.not.inCircle(
circle => circle.longitude(-81.7758995).latitude(41.4976393).radius(50).miles).return.all()
Chaining Searches
So far we've been doing searches that match on a single field. However, we often want to query on multiple fields. Not a problem:
const albums = await albumRepository.search()
.where('artist').equals('Mushroomhead')
.or('title').matches('butterfly')
.and('year').is.greaterThan(1990).return.all()
These are executed in order from left to right, and ignore any order of operations. So this query will match an artist of "Mushroomhead" OR a title matching "butterfly" before it goes on to match that the year is greater than 1990.
If you'd like to change this you can nest your queries:
const albums = await albumRepository.search()
.where('title').matches('butterfly').return.all()
.or(search => search
.where('artist').equals('Mushroomhead')
.and('year').is.greaterThan(1990)
).return.all()
This query finds all Mushroomhead albums after 1990 or albums that have "butterfly" in the title.
Running Raw Searches
The fluent search interface is nice, but sometimes you need to do something just a bit more. If you want, you can execute a search against your entities using the native RediSearch query syntax. I'm not going to explain the syntax here as it's a bit involved, but you can read it for yourself in the RediSearch documentation.
To execute a raw search, just call .searchRaw
on the repository with your query:
// finds all the Mushroomhead albums with the word 'beautiful' in the title from 1990 and beyond
const query = "@artist:{Mushroomhead} @title:beautiful @year:[1990 +inf]"
const albums = albumRepository.searchRaw(query).return.all();
The nice thing here is that it returns the same entities that you've been using for everything else. It's just a lower-level way of executing a query for when you need that extra bit of power.
Sorting Search Results
RediSearch provides a basic mechanism for sorting your search results and Redis OM exposes it. You can sort on a single field and can sort on the following types: string
, number
, boolean
, date
, and text
. To sort, simply call .sortBy
, .sortAscending
, or .sortDescending
:
const albumsByYear = await albumRepository.search()
.where('artist').equals('Mushroomhead')
.sortAscending('year').return.all()
const albumsByTitle = await albumRepository.search()
.where('artist').equals('Mushroomhead')
.sortBy('title', 'DESC').return.all()
You can also tell RediSearch to preload the sorting index to improve performance when you sort. This doesn't work with all of the types that you can sort by, but it's still pretty useful. To preload the index, mark the field in the Schema
with the sortable
property:
const albumSchema = new Schema(Album, {
artist: { type: 'string' },
title: { type: 'text', sortable: true },
year: { type: 'number', sortable: true },
genres: { type: 'string[]' },
outOfPublication: { type: 'boolean' }
})
If your schema is for a JSON data structure (the default), you can mark number
, date
, and text
fields as sortable. You can also mark string
and boolean
fields as sortable, but this will have no effect and will generate a warning.
If your schema is for a Hash, you can mark string
, number
, boolean
, date
, and text
fields as sortable.
Fields of the types point
and string[]
are never sortable.
If this seems like a confusing flowchart to parse, don't worry. If you call .sortBy
on a field in the Schema that's not marked as sortable
and it could be, Redis OM will log a warning to let you know.
Advanced Stuff
This is a bit of a catch-all for some of the more advanced stuff you can do with Redis OM.
Schema Options
Additional field options can be set depending on the field type. These correspond to the Field Options available when creating a RediSearch full-text index. Other than the separator
option, these only affect how content is indexed and searched.
schema type | RediSearch type | indexed | sortable | normalized | stemming | matcher | weight | separator | caseSensitive |
---|---|---|---|---|---|---|---|---|---|
string | TAG | yes | HASH Only | HASH Only | - | - | - | yes | yes |
number | NUMERIC | yes | yes | - | - | - | - | - | - |
boolean | TAG | yes | HASH Only | - | - | - | - | - | - |
string[] | TAG | yes | HASH Only | HASH Only | - | - | - | yes | yes |
number[] | NUMERIC | yes | yes | - | - | - | - | - | - |
date | NUMERIC | yes | yes | - | - | - | - | - | |
point | GEO | yes | - | - | - | - | - | - | |
text | TEXT | yes | yes | yes | yes | yes | yes | - | - |
indexed
: true | false, whether this field is indexed by RediSearch (default true)sortable
: true | false, whether to create an additional index to optimize sorting (default false)normalized
: true | false, whether to apply normalization for sorting (default true)matcher
: string defining phonetic matcher which can be one of: 'dm:en' for English, 'dm:fr' for French, 'dm:pt' for Portugese, 'dm:es' for Spanish (default none)stemming
: true | false, whether word-stemming is applied to text fields (default true)weight
: number, the importance weighting to use when ranking results (default 1)separator
: string, the character to delimit multiple tags (default '|')caseSensitive
: true | false, whether original letter casing is kept for search (default false)
Example showing additional options:
const commentSchema = new Schema(Comment, {
name: { type: 'text', stemming: false, matcher: 'dm:en' },
email: { type: 'string', normalized: false, },
posted: { type: 'date', sortable: true },
title: { type: 'text', weight: 2 },
comment: { type: 'text', weight: 1 },
approved: { type: 'boolean', indexed: false },
iphash: { type: 'string', caseSensitive: true },
notes: { type: 'string', indexed: false },
})
There are several other options available when defining a schema for your entity. Check them out in the detailed documentation for the Schema
class.
Documentation
This README is pretty extensive, but if you want to check out every last corner of Redis OM for Node.js, take a look at the complete API documentation.
Troubleshooting
I'll eventually have a FAQ full of answered questions, but since this is a new library, nobody has asked anything yet, frequently or otherwise. So, if you run into a problem, open an issue. Even cooler, dive into the code and send a pull request. If you just want to ping somebody, hit me up on the Redis Discord server.
Contributing
Contributions are always appreciated. I take PayPal and Bitcoin. Just kidding, I would sincerely appreciate your help in making this software better. Here are a couple of ways to help:
- Bug reports: This is a new project. You're gonna find them. Open an issue and I'll look into it. Or hunt down the problem and send me a pull request.
- Documentation: You can improve the life of a lot of developers by fixing typos, grammar, and bad jokes. Or by just pointing out where a little more detail would help. Again, open an issue or send a pull request.
Top Related Projects
RedisJSON - a JSON data type for Redis
Redis Node.js client
🚀 A robust, performance-focused, and full-featured Redis client for Node.js.
MongoDB object modeling designed to work in an asynchronous environment.
ORM for TypeScript and JavaScript. Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot