rqalpha
A extendable, replaceable Python algorithmic backtest && trading framework supporting multiple securities
Top Related Projects
Zipline, a Pythonic Algorithmic Trading Library
基于Python的开源量化交易平台开发框架
Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Python Algorithmic Trading Library
An Algorithmic Trading Library for Crypto-Assets in Python
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
Quick Overview
RQAlpha is an open-source quantitative trading and backtesting system developed by Ricequant Inc. It provides a Python-based framework for developing, testing, and deploying trading strategies, with support for various data sources and trading instruments.
Pros
- Flexible and extensible architecture allowing for custom modules and plugins
- Supports multiple asset classes including stocks, futures, and options
- Provides realistic simulation with accurate transaction costs and slippage models
- Offers both event-driven and vector-based backtesting engines for different performance needs
Cons
- Learning curve can be steep for beginners in quantitative finance
- Documentation is primarily in Chinese, which may be challenging for non-Chinese speakers
- Limited built-in strategies and examples compared to some other backtesting platforms
- Requires additional setup for real-time trading integration
Code Examples
- Creating a simple moving average crossover strategy:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
context.SHORT_PERIOD = 20
context.LONG_PERIOD = 120
def handle_bar(context, bar_dict):
prices = history_bars(context.s1, context.LONG_PERIOD, '1d', 'close')
short_ma = prices[-context.SHORT_PERIOD:].mean()
long_ma = prices.mean()
cur_position = context.portfolio.positions[context.s1].quantity
shares = context.portfolio.cash / bar_dict[context.s1].close
if short_ma > long_ma and cur_position == 0:
order_shares(context.s1, shares)
elif short_ma < long_ma and cur_position > 0:
order_shares(context.s1, -cur_position)
- Accessing fundamental data:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
pe_ratio = fundamental.get_fundamentals(
query(fundamentals.eod_derivative_indicator.pe_ratio)
.filter(fundamentals.eod_derivative_indicator.stockcode == context.s1)
).pe_ratio[0]
if pe_ratio < 10:
order_target_percent(context.s1, 1)
elif pe_ratio > 20:
order_target_percent(context.s1, 0)
- Using technical indicators:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
close_prices = history_bars(context.s1, 14, '1d', 'close')
rsi = talib.RSI(close_prices, timeperiod=14)[-1]
if rsi < 30:
order_target_percent(context.s1, 1)
elif rsi > 70:
order_target_percent(context.s1, 0)
Getting Started
- Install RQAlpha:
pip install rqalpha
-
Create a new strategy file (e.g.,
my_strategy.py
) with your trading logic. -
Run the backtest:
rqalpha run -f my_strategy.py -s 2015-01-01 -e 2020-01-01 -a stock 100000 --benchmark 000300.XSHG
- Analyze the results using the generated report and plots.
Competitor Comparisons
Zipline, a Pythonic Algorithmic Trading Library
Pros of Zipline
- More mature and widely adopted in the quantitative finance community
- Extensive documentation and community support
- Seamless integration with Quantopian's research platform
Cons of Zipline
- Less focus on Chinese markets compared to RQAlpha
- Steeper learning curve for beginners
- Limited built-in support for multi-asset class strategies
Code Comparison
Zipline example:
from zipline.api import order, record, symbol
def initialize(context):
context.asset = symbol('AAPL')
def handle_data(context, data):
order(context.asset, 10)
record(AAPL=data.current(context.asset, 'price'))
RQAlpha example:
from rqalpha.api import order_shares, current_price
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
order_shares(context.s1, 100)
logger.info("Price of {} is {}".format(context.s1, current_price(context.s1)))
Both frameworks offer similar functionality for basic trading strategies, but RQAlpha's syntax is more intuitive for beginners and focuses on Chinese market symbols. Zipline provides more advanced features and integrations with other tools in the Quantopian ecosystem.
基于Python的开源量化交易平台开发框架
Pros of vnpy
- More comprehensive trading platform with support for multiple asset classes
- Larger community and more frequent updates
- Modular architecture allowing for easier customization and extension
Cons of vnpy
- Steeper learning curve due to its complexity
- Potentially overwhelming for beginners or those focused solely on algorithmic trading
- Requires more system resources due to its extensive features
Code Comparison
vnpy:
from vnpy.event import EventEngine
from vnpy.trader.engine import MainEngine
from vnpy.trader.ui import MainWindow, create_qapp
def main():
qapp = create_qapp()
event_engine = EventEngine()
main_engine = MainEngine(event_engine)
main_window = MainWindow(main_engine, event_engine)
main_window.showMaximized()
qapp.exec_()
rqalpha:
from rqalpha import run_func
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
order_shares(context.s1, 100)
config = {
"base": {
"start_date": "2015-01-01",
"end_date": "2016-01-01",
"benchmark": "000001.XSHE",
"accounts": {
"stock": 100000
}
}
}
run_func(init, handle_bar, config)
Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Pros of qlib
- More comprehensive and advanced machine learning capabilities for quantitative investing
- Extensive documentation and examples for various trading strategies
- Active development and support from Microsoft's research team
Cons of qlib
- Steeper learning curve due to its more complex architecture
- Primarily focused on machine learning-based strategies, which may not suit all trading approaches
- Requires more computational resources for advanced models
Code comparison
rqalpha:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
order_shares(context.s1, 100)
qlib:
from qlib.contrib.strategy import TopkDropoutStrategy
from qlib.contrib.evaluate import backtest_daily
strategy = TopkDropoutStrategy(
model=model, dataset=dataset, topk=50, n_drop=5
)
report, positions = backtest_daily(strategy)
Summary
While rqalpha offers a simpler and more intuitive approach to backtesting and strategy development, qlib provides a more advanced platform for quantitative investing with a focus on machine learning techniques. rqalpha may be more suitable for beginners or those seeking a straightforward backtesting solution, while qlib caters to researchers and professionals looking to leverage cutting-edge AI/ML methods in their trading strategies.
Python Algorithmic Trading Library
Pros of PyAlgoTrade
- More extensive documentation and tutorials
- Supports a wider range of data sources, including Yahoo Finance and Google Finance
- Easier to integrate with external libraries and custom data sources
Cons of PyAlgoTrade
- Less active development and community support
- Fewer built-in strategies and indicators compared to RQAlpha
- Limited support for Chinese markets and A-shares
Code Comparison
PyAlgoTrade:
from pyalgotrade import strategy
from pyalgotrade.barfeed import yahoofeed
class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument):
super(MyStrategy, self).__init__(feed)
self.__instrument = instrument
RQAlpha:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
order_shares(context.s1, 100)
Both frameworks provide a straightforward way to define trading strategies, but RQAlpha's API is more concise and tailored for the Chinese market. PyAlgoTrade offers more flexibility in terms of data sources and strategy implementation, while RQAlpha provides a more streamlined approach for backtesting and live trading in Chinese markets.
An Algorithmic Trading Library for Crypto-Assets in Python
Pros of Catalyst
- Supports cryptocurrency trading and backtesting
- Integrates with popular exchanges like Binance and Coinbase
- Offers real-time market data and live trading capabilities
Cons of Catalyst
- Less active development and community support
- Limited documentation and learning resources
- Narrower focus on cryptocurrency markets
Code Comparison
RQAlpha:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
order_shares(context.s1, 100)
Catalyst:
from catalyst import run_algorithm
import catalyst.api as api
def initialize(context):
context.asset = api.symbol('btc_usdt')
def handle_data(context, data):
api.order(context.asset, 1)
Both frameworks use a similar structure with initialization and event-handling functions. RQAlpha focuses on traditional securities, while Catalyst is tailored for cryptocurrency trading. Catalyst uses specific cryptocurrency symbols and APIs, whereas RQAlpha uses stock tickers and more general order functions.
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
Pros of Lean
- More extensive documentation and community support
- Broader asset class coverage, including stocks, forex, and cryptocurrencies
- Robust backtesting and live trading capabilities
Cons of Lean
- Steeper learning curve due to its complexity
- Requires more computational resources for large-scale backtesting
Code Comparison
RQAlpha:
from rqalpha.api import *
def init(context):
context.s1 = "000001.XSHE"
def handle_bar(context, bar_dict):
order_shares(context.s1, 100)
Lean:
public class BasicTemplateAlgorithm : QCAlgorithm
{
public override void Initialize()
{
SetStartDate(2013, 10, 7);
SetEndDate(2013, 10, 11);
SetCash(100000);
AddEquity("SPY", Resolution.Minute);
}
public override void OnData(Slice data)
{
if (!Portfolio.Invested)
{
SetHoldings("SPY", 1);
}
}
}
RQAlpha focuses on simplicity and ease of use for the Chinese market, while Lean offers a more comprehensive and flexible platform for global markets. RQAlpha's Python-based API is more accessible for beginners, whereas Lean's C# implementation provides enhanced performance and extensibility for advanced users.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
======= RQAlpha
.. image:: https://raw.githubusercontent.com/ricequant/rq-resource/master/rqalpha/logo.jpg
.. image:: https://github.com/ricequant/rqalpha/workflows/Test/badge.svg :target: https://github.com/ricequant/rqalpha/actions?query=workflow%3ATest :alt: GitHub Actions status for master branch
.. image:: https://coveralls.io/repos/github/ricequant/rqalpha/badge.svg?branch=master :target: https://coveralls.io/github/ricequant/rqalpha?branch=master
.. image:: https://readthedocs.org/projects/rqalpha/badge/?version=latest :target: http://rqalpha.readthedocs.io/zh_CN/latest/?badge=latest :alt: Documentation Status
.. image:: https://img.shields.io/pypi/v/rqalpha.svg :target: https://pypi.python.org/pypi/rqalpha :alt: PyPI Version
.. image:: https://img.shields.io/pypi/pyversions/rqalpha.svg :target: https://pypi.python.org/pypi/rqalpha :alt: Python Version Support
.. image:: https://img.shields.io/pypi/dm/rqalpha?label=pypi%20downloads :target: https://pypi.python.org/pypi/rqalpha :alt: PyPI - Downloads
RQAlpha ä»æ°æ®è·åãç®æ³äº¤æãåæµå¼æï¼å®ç模æï¼å®ç交æå°æ°æ®åæï¼ä¸ºç¨åºå交æè æä¾äºå ¨å¥è§£å³æ¹æ¡ã
ä» ééåä¸ä½¿ç¨ãå¦éåä¸ä½¿ç¨ï¼è¯·èç³»æ们ï¼public@ricequant.com
RQAlpha å ·æçµæ´»çé ç½®æ¹å¼ï¼å¼ºå¤§çæ©å±æ§ï¼ç¨æ·å¯ä»¥é常容æå°å®å¶ä¸å±äºèªå·±çç¨åºå交æç³»ç»ã
RQAlpha ææççç¥é½å¯ä»¥ç´æ¥å¨ Ricequant
_ ä¸è¿è¡åæµåå®ç模æï¼å¹¶ä¸å¯ä»¥éè¿å¾®ä¿¡åé®ä»¶å®æ¶æ¨éæ¨ç交æä¿¡å·ã
Ricequant
_ æ¯ä¸ä¸ªå¼æ¾çéåç®æ³äº¤æ社åºï¼ä¸ºç¨åºå交æè
æä¾å
è´¹çåæµåå®ç模æç¯å¢ï¼å¹¶ä¸ä¼ä¸é´æ举è¡å®çèµéæå
¥çéåæ¯èµã
ç¹ç¹
====================== =================================================================================
æäºä½¿ç¨ 让æ¨éä¸äºçç¥çå¼åï¼ä¸è¡ç®åçå½ä»¤å°±å¯ä»¥æ§è¡æ¨ççç¥ã
å®åçææ¡£ æ¨å¯ä»¥ç´æ¥è®¿é® RQAlpha ææ¡£
_ æè
Ricequant ææ¡£
_ æ¥è·åæ¨éè¦çä¿¡æ¯ã
æ´»è·çç¤¾åº æ¨å¯ä»¥éè¿è®¿é® Ricequant 社åº
_ è·åå询é®æå
³ RQAlpha çä¸åé®é¢ï¼æå¾å¤ä¼ç§çç«¥éä¼è§£çæ¨çé®é¢ã
稳å®çç¯å¢ æ¯å¤©é½æä¼å¤§éçç®æ³äº¤æå¨ Ricequant ä¸è¿è¡ï¼æ è®ºæ¯ RQAlphaï¼è¿æ¯æ°æ®ï¼æ们è½ä¼åå°é®é¢ç§å¤çï¼ç§è§£å³ã
çµæ´»çé
ç½® æ¨å¯ä»¥ä½¿ç¨å¤ç§æ¹å¼æ¥é
ç½®åè¿è¡çç¥ï¼åªéç®åçé
置就å¯ä»¥æ建éåèªå·±ç交æç³»ç»ã
强大çæ©å±æ§ å¼åè
å¯ä»¥åºäºæ们æä¾ç Mod Hook æ¥å£æ¥è¿è¡æ©å±ã
====================== =================================================================================
å¿«éæå¼
RQAlpha ä»ç»
_å®è£ æå
_10åéå¦ä¼ RQAlpha
_çç¥ç¤ºä¾
_
API æå
API
_ : RQAlpha API æå
æ´æ°è®°å½
CHANGELOG
_ RQALPHA æ´æ°è®°å½
Mod
RQAlpha æä¾äºæå ·æå±æ§ç Mod Hook æ¥å£ï¼è¿æå³çå¼åè å¯ä»¥é常容æç对æ¥ç¬¬ä¸æ¹åºã
æ¨å¯ä»¥éè¿å¦ä¸æ¹å¼ä½¿ç¨ å®è£ å使ç¨Mod:
.. code-block:: bash
# æ¥çå½åå®è£
ç Mod å表åç¶æ
$ rqalpha mod list
# å¯ç¨ Mod
$ rqalpha mod enable xxx
# ç¦ç¨ Mod
$ rqalpha mod disable xxx
以ä¸æ¯ç®åå·²ç»éæç Mod å表:
======================= ==================================================================================
Modå 说æ
======================= ==================================================================================
sys_accounts
_ æä¾äºè¡ç¥¨ãæè´§çä¸å API å®ç°åæä»æ¨¡åçå®ç°
sys_analyser
_ è®°å½æ¯å¤©çä¸åãæ交ãæèµç»åãæä»çä¿¡æ¯ï¼å¹¶è®¡ç®é£é©åº¦ææ ï¼å¹¶ä»¥csvãplotå¾æ çå½¢å¼è¾åºåæç»æ
sys_progress
_ å¨æ§å¶å°è¾åºå½åçç¥çåæµè¿åº¦ã
sys_risk
_ 对订åè¿è¡äºåé£æ§æ ¡éª
sys_scheduler
_ æä¾äºå®æ¶å¨ï¼å³æç
§ç¹å®å¨ææ§è¡æå®é»è¾çåè½
sys_simulation
_ æä¾äºæ¨¡ææ®åå¼æååæµäºä»¶æºç模åï¼ä¸ºåæµå模æ交ææä¾æ¯æ
sys_transaction_cost
_ å®ç°äºè¡ç¥¨ãæè´§ç交æç¨è´¹è®¡ç®é»è¾
======================= ==================================================================================
å¦ææ¨åºäº RQAlpha è¿è¡äº Mod æ©å±ï¼æ¬¢è¿åç¥æ们ï¼å¨å®¡æ ¸éè¿åï¼ä¼å¨ Mod å表ä¸æ·»å æ¨ç Mod ä¿¡æ¯åé¾æ¥ã
å ³äº 4.x çæ¬æ°æ® bundle åæ´ç说æ
RQAlpha äºè¿ææ´æ°äº 4.0.0 çæ¬ï¼4.0.0 æ·»å äºå¤§éåè½æ¹è¿åä½éªæ¹åã
å
¶ä¸ä¸ç¹éè¦æ¨é¢å¤æ³¨æï¼æä»¬å¨ 4.0.0 çæ¬ä¸éæäºæ°æ® bundle çæ ¼å¼ï¼å 3.x çæ¬ç bundle å·²åæ¢æ´æ°ï¼æ¨éè¦æ´æ° RQAlpha è³ 4.x 以使ç¨ä¼åè¿ç bundleã
å¦å¤ï¼ä¸ºäºå¹³è¡¡æ¨ç使ç¨ä½éªä¸æ们çç»´æ¤ææ¬ï¼4.x çæ¬æä¾ä¸è½½ç bundle æ¹ä¸ºæ度æ´æ°ï¼ä½æ¨ä»å¯ä»¥ä½¿ç¨ RQData
_ å¨æ¬å° éæ¶ ä½¿ç¨ææ°æ°æ®æ´æ° bundleï¼
å
·ä½æä½å¯æ¥ç RQAlpha ææ¡£ <https://rqalpha.readthedocs.io/zh_CN/latest/intro/install.html#intro-install-get-data>
_ ã
RQDataæ°æ®æ¬å°åæå¡
为ä¸ä¸æèµè æä¾ä¾¿å©æç¨çéèæ°æ®æ¹æ¡ï¼å é¤æ°æ®æ´çãæ¸ æ´åè¿ç»´çå°æ°ï¼ä½¿æç 人ååçç¥å¼åè å¯ä»¥æ´ä¸æ³¨äºæç å模åå¼åçå ³é®ç¯èãç±³çRQDataéèæ°æ®APIå¯æ ç¼å¯¹æ¥RQAlphaï¼æ¨åªéå¨çç¥ä¸import rqdatacï¼å³å¯éè¿APIæ¬å°è°ç¨ä»¥ä¸æ°æ®ï¼
============================= ================================================================================== åçº¦ä¿¡æ¯ ä¸å½Aè¡ãææ°ãåºå åºå¤åºéãæè´§ãåºå åºå¸çåºæ¬åçº¦ä¿¡æ¯ Aè¡åºç¡ä¿¡æ¯ 交ææ¥ãè¡ç¥¨æååå红ãåçãSTè¡å¤æçæ°æ® è¡æ æ°æ® Aè¡2005å¹´è³ä»åå®æ¶è¡æ æ°æ®ï¼å«è¿ç»ç«ä»·æ¶é´æ®µï¼ï¼ææ°å¿«ç §è¡æ ãåå²æéãææ°ä¼°å¼ææ ç åºéæ°æ® åºç¡æ°æ®ãåå¼æ°æ®ãæ¥åæ«é²ãæä»æ°æ®ç æè´§ãææåç°è´§æ°æ® å ¨å¸åºæææ°æ®ï¼æè´§åå²åå¿«ç §è¡æ æ°æ®çï¼æ货主åè¿ç»å约ï¼æè´§ä¼åæä»æååä»å å¯è½¬åºæ°æ® å¯è½¬åºåºç¡å约ï¼å¯è½¬åºè¡ä»·ã转åºå¯¼è´è§æ¨¡ååãç°éçæ°æ® Aè¡ä¸å¸ä»¥æ¥çææè´¢å¡æ°æ® åºç¡è´¢å¡æ°æ®ãè¥è¿ãçå©è½åãä¼°å¼çï¼è´¢å¡å¿«æ¥åä¸ç»©é¢åãTTMæ»å¨è´¢å¡æ°æ®çï¼æ¯æè´¢å¡æ°æ®Point in Time API è¡ä¸ãæ¿åãæ¦å¿µåç±» è¡ç¥¨èµéç°éæµå ¥æµåºãæ¢æç é£æ ¼å åæ°æ® é£æ ¼å åæ´é²åº¦ãæ¶ççãåæ¹å·®åç¹å¼é£é©ãï¼æ¯ä¸ªäº¤ææ¥8:30å¼å§æ´æ°å¢éæ°æ®ï¼ å®è§ç»æµæ°æ® å款åå¤éçãè´§å¸ä¾åºéã大éå®è§å åçæ°æ® çµåæ°æ® 天ç«ãæ·å®ã京ä¸ä¸å¤§å¹³å°ï¼æ¥æ´æ°ï¼ã注ï¼ä¸è¶ 对称ç§æåä½æä¾ èæ æ°æ® éªçä¸ä¸æ¹è´¢å¯è¡å§ã注ï¼ä¸æ°æ®åä½æ¹åä½æä¾ ============================= ==================================================================================
ç®åRQDataå·²æ£å¼ä¸çº¿ï¼æ¯æPython APIãMatlab APIåExcelæ件çå¤ç§è°åæ¹å¼ï¼æ¬¢è¿ å
è´¹è¯ç¨ <https://www.ricequant.com/welcome/rqdata>
_ å å¨è¯¢ç§æåé¨ç½² <https://www.ricequant.com/welcome/pricing>
_ ã
å å ¥å¼å
å¦ä½è´¡ç®ä»£ç
_åºæ¬æ¦å¿µ
_RQAlpha åºäº Mod è¿è¡æ©å±
_
è·å帮å©
å ³äºRQAlphaçä»»ä½é®é¢å¯ä»¥éè¿ä»¥ä¸éå¾æ¥è·å帮å©
- å¯ä»¥éè¿
ç´¢å¼
_ æè 使ç¨æç´¢åè½æ¥æ¥æ¾ç¹å®é®é¢ - å¨
Github Issues
_ ä¸æ交issue - RQAlpha 交æµç¾¤ã487188429ã
.. _Github Issues: https://github.com/ricequant/rqalpha/issues .. _Ricequant: https://www.ricequant.com/algorithms .. _RQAlpha ææ¡£: http://rqalpha.readthedocs.io/zh_CN/latest/ .. _Ricequant ææ¡£: https://www.ricequant.com/api/python/chn .. _Ricequant 社åº: https://www.ricequant.com/community/category/all/ .. _FAQ: http://rqalpha.readthedocs.io/zh_CN/latest/faq.html .. _ç´¢å¼: http://rqalpha.readthedocs.io/zh_CN/latest/genindex.html .. _RQPro: https://www.ricequant.com/rqpro_propaganda/?utm_source=github .. _ä¸ä¸çº§æ¬å°ç»ç«¯RQPro: https://www.ricequant.com/rqpro_propaganda/?utm_source=github
.. _RQAlpha ä»ç»: http://rqalpha.readthedocs.io/zh_CN/latest/intro/overview.html .. _å®è£ æå: http://rqalpha.readthedocs.io/zh_CN/latest/intro/install.html .. _10åéå¦ä¼ RQAlpha: http://rqalpha.readthedocs.io/zh_CN/latest/intro/tutorial.html .. _çç¥ç¤ºä¾: http://rqalpha.readthedocs.io/zh_CN/latest/intro/examples.html
.. _API: http://rqalpha.readthedocs.io/zh_CN/latest/api/base_api.html
.. _å¦ä½è´¡ç®ä»£ç : http://rqalpha.readthedocs.io/zh_CN/latest/development/make_contribute.html .. _åºæ¬æ¦å¿µ: http://rqalpha.readthedocs.io/zh_CN/latest/development/basic_concept.html .. _RQAlpha åºäº Mod è¿è¡æ©å±: http://rqalpha.readthedocs.io/zh_CN/latest/development/mod.html .. _History: http://rqalpha.readthedocs.io/zh_CN/latest/history.html .. _TODO: https://github.com/ricequant/rqalpha/blob/master/TODO.md .. _develop åæ¯: https://github.com/ricequant/rqalpha/tree/develop .. _master åæ¯: https://github.com/ricequant/rqalpha .. _rqalpha_mod_tushare: https://github.com/ricequant/rqalpha-mod-tushare .. _éè¿ Mod æ©å± RQAlpha: http://rqalpha.io/zh_CN/latest/development/mod.html .. _sys_analyser: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_analyser/README.rst .. _sys_scheduler: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_scheduler/README.rst .. _sys_progress: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_progress/README.rst .. _sys_risk: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_risk/README.rst .. _sys_simulation: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_simulation/README.rst .. _sys_accounts: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_accounts/README.rst .. _sys_transaction_cost: https://github.com/ricequant/rqalpha/blob/master/rqalpha/mod/rqalpha_mod_sys_transaction_cost/README.rst .. _RQDataæ°æ®æ¬å°åæå¡: https://www.ricequant.com/doc/rqdata-institutional .. _ç¹å»é¾æ¥å è´¹å¼é: https://ricequant.mikecrm.com/h7ZFJnT .. _RQData: https://www.ricequant.com/welcome/rqdata .. _CHANGELOG: https://rqalpha.readthedocs.io/zh_CN/latest/history.html
Top Related Projects
Zipline, a Pythonic Algorithmic Trading Library
基于Python的开源量化交易平台开发框架
Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.
Python Algorithmic Trading Library
An Algorithmic Trading Library for Crypto-Assets in Python
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot