Convert Figma logo to code with AI

shmilylty logoOneForAll

OneForAll是一款功能强大的子域收集工具

8,263
1,301
8,263
93

Top Related Projects

10,098

Fast passive subdomain enumeration tool.

Find domains and subdomains related to a given domain

11,936

In-depth attack surface mapping and asset discovery

Fast subdomains enumeration tool for penetration testers

2,314

Generates permutations, alterations and mutations of subdomains and then resolves them

E-mails, subdomains and names Harvester - OSINT

Quick Overview

OneForAll is a powerful subdomain discovery tool designed for information gathering and penetration testing. It leverages various collection methods and numerous API interfaces to perform comprehensive subdomain enumeration, providing a versatile solution for security professionals and researchers.

Pros

  • Comprehensive collection: Utilizes multiple sources and methods for thorough subdomain discovery
  • Modular design: Allows for easy extension and customization of functionality
  • Efficient performance: Implements concurrent processing for faster results
  • Detailed output: Provides rich information about discovered subdomains

Cons

  • Complex setup: Requires installation of multiple dependencies and API configurations
  • Potential for false positives: May return some inaccurate results due to the wide range of sources used
  • Resource-intensive: Can consume significant system resources during large-scale scans
  • Limited to subdomain discovery: Focuses primarily on subdomain enumeration rather than broader vulnerability assessment

Code Examples

# Basic usage example
python3 oneforall.py --target example.com run
# Using specific modules for enumeration
python3 oneforall.py --target example.com --include-subdomains --alive --port 80,443 run
# Exporting results to a CSV file
python3 oneforall.py --target example.com --fmt csv --path /path/to/output.csv run

Getting Started

  1. Clone the repository:

    git clone https://github.com/shmilylty/OneForAll.git
    
  2. Install dependencies:

    cd OneForAll
    pip3 install -r requirements.txt
    
  3. Configure API keys in the config.py file

  4. Run OneForAll:

    python3 oneforall.py --target example.com run
    

For more detailed usage and configuration options, refer to the project's documentation on GitHub.

Competitor Comparisons

10,098

Fast passive subdomain enumeration tool.

Pros of Subfinder

  • Faster execution due to Go implementation
  • Better integration with other ProjectDiscovery tools
  • More active development and frequent updates

Cons of Subfinder

  • Limited to subdomain enumeration, while OneForAll offers more comprehensive functionality
  • Fewer built-in data sources compared to OneForAll
  • Less detailed output and reporting options

Code Comparison

OneForAll (Python):

def main():
    banner()
    parser = argparse.ArgumentParser(description='OneForAll is a powerful subdomain integration tool')
    subparsers = parser.add_subparsers(dest='command', help='Commands')
    # ... (additional code)

Subfinder (Go):

func main() {
    options := &runner.Options{}
    flagSet := goflags.NewFlagSet()
    flagSet.SetDescription(`Subfinder is a subdomain discovery tool that discovers valid subdomains for websites`)
    // ... (additional code)

Both tools use command-line argument parsing, but Subfinder's implementation in Go may offer performance advantages. OneForAll's Python code suggests a more extensive feature set, while Subfinder focuses on efficient subdomain discovery.

Find domains and subdomains related to a given domain

Pros of assetfinder

  • Lightweight and fast, focusing solely on subdomain enumeration
  • Easy to use with a simple command-line interface
  • Can be easily integrated into other tools and scripts

Cons of assetfinder

  • Limited functionality compared to OneForAll's comprehensive feature set
  • Lacks advanced filtering and validation options
  • Does not provide as many data sources for subdomain discovery

Code Comparison

assetfinder:

func main() {
    domain := flag.String("domain", "", "The domain to find assets for")
    flag.Parse()
    for result := range assetfinder.Run(*domain) {
        fmt.Println(result)
    }
}

OneForAll:

def main():
    parser = argparse.ArgumentParser(description='OneForAll is a powerful subdomain integration tool')
    parser.add_argument('domain', help='Domain name')
    args = parser.parse_args()
    OneForAll(args.domain).run()
    Database().export()

OneForAll offers a more comprehensive approach with built-in database export functionality, while assetfinder provides a simpler, focused implementation for quick subdomain enumeration. assetfinder is better suited for integration into larger toolchains, whereas OneForAll is more feature-rich for standalone use in subdomain discovery and enumeration tasks.

11,936

In-depth attack surface mapping and asset discovery

Pros of Amass

  • More mature and actively maintained project with frequent updates
  • Extensive feature set including DNS enumeration, web crawling, and data mining
  • Strong community support and integration with other security tools

Cons of Amass

  • Steeper learning curve due to complex configuration options
  • Higher resource consumption, especially for large-scale scans
  • Primarily focused on DNS enumeration, while OneForAll offers a broader range of subdomain discovery methods

Code Comparison

Amass (Go):

func (e *Enumeration) submitKnownNames() {
    for _, name := range e.Config.ProvidedNames {
        e.Bus.Publish(requests.NewNameTopic, &requests.DNSRequest{
            Name:   name,
            Domain: e.Config.Domain,
            Tag:    requests.EXTERNAL,
            Source: "User Input",
        })
    }
}

OneForAll (Python):

def run_modules(domain):
    module_map = settings.module_dict
    for module in module_map.keys():
        module_func = settings.module_dict.get(module)
        module_func.run(domain)

Both projects aim to discover subdomains, but Amass focuses more on DNS enumeration and uses Go, while OneForAll employs various techniques and is written in Python. Amass offers more advanced features and integrations, while OneForAll provides a simpler interface and broader discovery methods.

Fast subdomains enumeration tool for penetration testers

Pros of Sublist3r

  • Lightweight and easy to use, with a simple command-line interface
  • Fast execution, suitable for quick subdomain enumeration tasks
  • Well-established project with a large user base and community support

Cons of Sublist3r

  • Limited data sources compared to OneForAll's extensive collection
  • Lacks advanced features like DNS zone transfer and certificate transparency checks
  • Less frequent updates and maintenance compared to OneForAll

Code Comparison

Sublist3r:

def main(domain, threads, savefile, ports, silent, verbose, enable_bruteforce, engines):
    bruteforce_list = []
    subdomains = []
    search_list = set()

OneForAll:

def main(target, port, silent, path, format, brute, dns, req, api, alive, cdn, times, proxy, output):
    """
    OneForAll entry function
    """
    print(banner)
    dt = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print(f'[*] Starting OneForAll @ {dt}\n')

OneForAll offers a more comprehensive set of features and data sources, making it suitable for in-depth subdomain enumeration. However, Sublist3r's simplicity and speed make it a good choice for quick scans or users who prefer a more straightforward tool. OneForAll's code structure suggests a more modular and extensible approach, while Sublist3r focuses on a streamlined execution process.

2,314

Generates permutations, alterations and mutations of subdomains and then resolves them

Pros of altdns

  • Focused specifically on subdomain permutation and alteration
  • Lightweight and easy to use for targeted subdomain discovery
  • Can be easily integrated into existing workflows and scripts

Cons of altdns

  • Limited functionality compared to OneForAll's comprehensive approach
  • Lacks built-in DNS resolution and validation features
  • Does not support as many data sources for subdomain discovery

Code Comparison

altdns:

def insert_all_indexes(domain):
    return [domain[:i] + '.' + domain[i:] for i in range(len(domain))]

OneForAll:

def gen_fuzz_domains(domain):
    domains = list()
    with open(data_storage_dir.resolve('fuzz.txt')) as f:
        for line in f:
            word = line.strip()
            if word:
                domains.append(f'{word}.{domain}')
    return domains

Both projects use Python for subdomain generation, but OneForAll's approach is more flexible, allowing for custom wordlists and patterns. altdns focuses on permutations of the existing domain, while OneForAll generates subdomains based on predefined patterns and wordlists.

E-mails, subdomains and names Harvester - OSINT

Pros of theHarvester

  • Longer development history and more established in the OSINT community
  • Supports a wider range of search engines and data sources
  • Includes built-in DNS enumeration capabilities

Cons of theHarvester

  • Less frequent updates compared to OneForAll
  • Limited subdomain enumeration features
  • Slower performance when scanning large domains

Code Comparison

TheHarvester:

from theHarvester.discovery import *
from theHarvester.discovery.constants import *
search = googlesearch.search_google(word, limit, start)
search.process()
emails = search.get_emails()

OneForAll:

from oneforall.common import utils
from oneforall.modules.search import google
result = google.Google(domain).search()
subdomains = utils.get_subdomains(result)

TheHarvester focuses on general OSINT gathering, including email addresses and hostnames, while OneForAll specializes in subdomain enumeration. TheHarvester's code structure is more modular, with separate classes for each search engine. OneForAll uses a more streamlined approach, with utility functions for processing results.

Both tools are valuable for information gathering, but OneForAll excels in subdomain discovery, while theHarvester offers a broader range of OSINT capabilities. The choice between them depends on the specific requirements of your reconnaissance tasks.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

OneForAll

Build Status codecov Maintainability License python python

👊OneForAll是一款功能强大的子域收集工具 📝English Document

Example

🚀上手指南

📢 请务必花一点时间阅读此文档,有助于你快速熟悉OneForAll!

🐍安装要求

OneForAll基于Python 3.6.0开发和测试,OneForAll需要高于Python 3.6.0的版本才能运行。 安装Python环境可以参考Python 3 安装指南。运行以下命令检查Python和pip3版本:

python -V
pip3 -V

如果你看到类似以下的输出便说明Python环境没有问题:

Python 3.6.0
pip 19.2.2 from C:\Users\shmilylty\AppData\Roaming\Python\Python36\site-packages\pip (python 3.6)
✔安装步骤(git 版)
  1. 下载

由于该项目处于开发中,会不断进行更新迭代,下载时请使用git clone克隆最新代码仓库,也方便后续的更新,不推荐从Releases下载,因为Releases里版本更新缓慢,也不方便更新, 本项目已经在码云(Gitee)镜像了一份,国内推荐使用码云进行克隆比较快:

git clone https://gitee.com/shmilylty/OneForAll.git

或者:

git clone https://github.com/shmilylty/OneForAll.git
  1. 安装

你可以通过pip3安装OneForAll的依赖,以下为Windows系统下使用pip3安装依赖的示例:注意:如果你的Python3安装在系统Program Files目录下,如:C:\Program Files\Python36,那么请以管理员身份运行命令提示符cmd执行以下命令!

cd OneForAll/
python3 -m pip install -U pip setuptools wheel -i https://mirrors.aliyun.com/pypi/simple/
pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
python3 oneforall.py --help

其他系统平台的请参考依赖安装,如果在安装依赖过程中发现编译某个依赖库失败时可以参考常见问题与回答.md文档中解决方法,如果依然不能解决欢迎加群反馈问题。

  1. 更新

执行以下命令**更新**项目(可保存对/config/setting.py和/config/api.py的修改):

git stash        # 暂存本地的修改
git fetch --all  # 拉取项目更新
git pull         # 下载覆盖
git stash pop    # 释放本地修改
✔安装步骤(docker 版)

首先下载并编辑配置文件,添加自己的api和个性化设置,并保留原始文件结构

config
├── api.py
├── default.py
├── __init__.py
├── log.py
└── setting.py

拉取镜像并执行,其中~/.config替换为你自己配置文件所在文件夹的路径

docker pull shmilylty/oneforall
docker run -it --rm -v ~/results:/OneForAll/results -v ~/.config:/OneForAll/config shmilylty/oneforall --target example.com run

参数直接加在指令末尾,结果会输出在本地目录~/results,如需保存到其他位置,可以自行修改

✨使用演示

如果你是通过pip3安装的依赖则使用以下命令运行示例:

python3 oneforall.py --target example.com run
python3 oneforall.py --targets ./example.txt run

Example

🧐结果说明

我们以python3 oneforall.py --target example.com run命令为例,OneForAll在默认参数正常执行完毕会在results目录生成相应结果:

Result

example.com.csv是每个主域下的子域收集结果。

all_subdomain_result_1583034493.csv是每次运行OneForAll收集到子域的汇总结果,包含example.com.csv,方便在批量收集场景中获取全部结果。

result.sqlite3是存放每次运行OneForAll收集到子域的SQLite3结果数据库,其数据库结构如下图:

Database

其中类似example_com_origin_result表存放每个模块最初子域收集结果。

其中类似example_com_resolve_result表存放对子域进行解析后的结果。

其中类似example_com_last_result表存放上一次子域收集结果(需要收集两次以上才会生成)。

其中类似example_com_now_result表存放现在子域收集结果,一般情况关注这张表就可以了。

更多信息请参阅字段解释说明。

🤔使用帮助

命令行参数只提供了一些常用参数,更多详细的参数配置请见setting.py,如果你认为有些参数是命令界面经常使用到的或缺少了什么参数等问题非常欢迎反馈。由于众所周知的原因,如果要使用一些被墙的收集接口请先到setting.py配置代理,有些收集模块需要提供API(大多都是可以注册账号免费获取),如果需要使用请到api.py配置API信息,如果不使用请忽略有关报错提示。(详细模块请阅读收集模块说明)

OneForAll命令行界面基于Fire实现,有关Fire更高级使用方法请参阅使用Fire CLI。

oneforall.py是主程序入口,oneforall.py可以调用brute.py,takerover.py及dbexport.py等模块,为了方便进行子域爆破独立出了brute.py,为了方便进行子域接管风险检查独立出了takerover.py,为了方便数据库导出独立出了dbexport.py,这些模块都可以单独运行,并且所接受参数要更丰富一点,如果要单独使用这些模块请参考使用帮助

❗注意:当你在使用过程中遇到一些问题或者疑惑时,请先到Issues里使用搜索找找答案,还可以参阅常见问题与回答。

oneforall.py使用帮助

以下帮助信息可能不是最新的,你可以使用python oneforall.py --help获取最新的帮助信息。

python oneforall.py --help
NAME
    oneforall.py - OneForAll帮助信息

SYNOPSIS
    oneforall.py COMMAND | --target=TARGET <flags>

DESCRIPTION
    OneForAll是一款功能强大的子域收集工具

    Example:
        python3 oneforall.py version
        python3 oneforall.py --target example.com run
        python3 oneforall.py --targets ./domains.txt run
        python3 oneforall.py --target example.com --valid None run
        python3 oneforall.py --target example.com --brute True run
        python3 oneforall.py --target example.com --port small run
        python3 oneforall.py --target example.com --fmt csv run
        python3 oneforall.py --target example.com --dns False run
        python3 oneforall.py --target example.com --req False run
        python3 oneforall.py --target example.com --takeover False run
        python3 oneforall.py --target example.com --show True run

    Note:
        参数alive可选值True,False分别表示导出存活,全部子域结果
        参数port可选值有'default', 'small', 'large', 详见config.py配置
        参数fmt可选格式有 'csv','json'
        参数path默认None使用OneForAll结果目录生成路径

ARGUMENTS
    TARGET
        单个域名(二选一必需参数)
    TARGETS
        每行一个域名的文件路径(二选一必需参数)

FLAGS
    --brute=BRUTE
        s
    --dns=DNS
        DNS解析子域(默认True)
    --req=REQ
        HTTP请求子域(默认True)
    --port=PORT
        请求验证子域的端口范围(默认只探测80端口)
    --valid=VALID
        只导出存活的子域结果(默认False)
    --fmt=FMT
        结果保存格式(默认csv)
    --path=PATH
        结果保存路径(默认None)
    --takeover=TAKEOVER
        检查子域接管(默认False)

🎉项目简介

项目地址:https://github.com/shmilylty/OneForAll

在渗透测试中信息收集的重要性不言而喻,子域收集是信息收集中必不可少且非常重要的一环,目前网上也开源了许多子域收集的工具,但是总是存在以下部分问题:

  • **不够强大**,子域收集的接口不够多,不能做到对批量子域自动收集,没有自动子域解析,验证,FUZZ以及信息拓展等功能。
  • 不够友好,固然命令行模块比较方便,但是当可选的参数很多,要实现的操作复杂,用命令行模式就有点不够友好,如果有交互良好,高可操作的前端那么使用体验就会好很多。
  • **缺少维护**,很多工具几年没有更新过一次,issues和PR是啥,不存在的。
  • 效率问题,没有利用多进程,多线程以及异步协程技术,速度较慢。

为了解决以上痛点,此项目应用而生,正如其名,我希望OneForAll是一款集百家之长,功能强大的全面快速子域收集终极神器🔨。

目前OneForAll还在开发中,肯定有不少问题和需要改进的地方,欢迎大佬们提交Issues和PR,用着还行给个小星星✨吧,目前有一个专门用于OneForAll交流和反馈QQ群👨‍👨‍👦‍👦::824414244(加群验证:信息收集)。

👍功能特性

  • **收集能力强大**,详细模块请阅读收集模块说明。
    1. 利用证书透明度收集子域(目前有6个模块:censys_api,certspotter,crtsh,entrust,google,spyse_api)
    2. 常规检查收集子域(目前有4个模块:域传送漏洞利用axfr,检查跨域策略文件cdx,检查HTTPS证书cert,检查内容安全策略csp,检查robots文件robots,检查sitemap文件sitemap,利用NSEC记录遍历DNS域dnssec,后续会添加NSEC3记录等模块)
    3. 利用网上爬虫档案收集子域(目前有2个模块:archivecrawl,commoncrawl,此模块还在调试,该模块还有待添加和完善)
    4. 利用DNS数据集收集子域(目前有24个模块:bevigil_api, binaryedge_api, bufferover, cebaidu, chinaz, chinaz_api, circl_api, cloudflare, dnsdb_api, dnsdumpster, hackertarget, ip138, ipv4info_api, netcraft, passivedns_api, ptrarchive, qianxun, rapiddns, riddler, robtex, securitytrails_api, sitedossier, threatcrowd, wzpc, ximcx)
    5. 利用DNS查询收集子域(目前有5个模块:通过枚举常见的SRV记录并做查询来收集子域srv,以及通过查询域名的DNS记录中的MX,NS,SOA,TXT记录来收集子域)
    6. 利用威胁情报平台数据收集子域(目前有6个模块:alienvault, riskiq_api,threatbook_api,threatminer,virustotal,virustotal_api该模块还有待添加和完善)
    7. 利用搜索引擎发现子域(目前有18个模块:ask, baidu, bing, bing_api, duckduckgo, exalead, fofa_api, gitee, github, github_api, google, google_api, shodan_api, so, sogou, yahoo, yandex, zoomeye_api),在搜索模块中除特殊搜索引擎,通用的搜索引擎都支持自动排除搜索,全量搜索,递归搜索。
  • **支持子域爆破**,该模块有常规的字典爆破,也有自定义的fuzz模式,支持批量爆破和递归爆破,自动判断泛解析并处理。
  • 支持子域验证,默认开启子域验证,自动解析子域DNS,自动请求子域获取title和banner,并综合判断子域存活情况。
  • 支持子域爬取,根据已有的子域,请求子域响应体以及响应体里的JS,从中再次发现新的子域。
  • **支持子域置换**,根据已有的子域,使用子域替换技术再次发现新的子域。
  • **支持子域接管**,默认开启子域接管风险检查,支持子域自动接管(目前只有Github,有待完善),支持批量检查。
  • **处理功能强大**,发现的子域结果支持自动去除,自动DNS解析,HTTP请求探测,自动筛选出有效子域,拓展子域的Banner信息,最终支持的导出格式有txt, csv, json。
  • **速度极快**,收集模块使用多线程调用,爆破模块使用massdns,DNS解析速度每秒可解析350000以上个域名,子域验证中DNS解析和HTTP请求使用异步多协程,多线程检查子域接管风险。
  • 体验良好,各模块都有进度条,异步保存各模块结果。

如果你有其他很棒的想法请务必告诉我!😎

🌲目录结构

更多信息请参阅目录结构说明。

本项目docs目录下还提供了一些帮助与说明,如子域字典来源说明、泛解析判断流程。

👏用到框架

  • aiohttp - 异步http客户端/服务器框架
  • beautifulsoup4 - 可以轻松从HTML或XML文件中提取数据的Python库
  • fire - Python Fire是一个纯粹根据任何Python对象自动生成命令行界面(CLI)的库
  • loguru - 旨在带来愉快的日志记录Python库
  • massdns - 高性能的DNS解析器
  • records - Records是一个非常简单但功能强大的库,用于对大多数关系数据库进行最原始SQL查询。
  • requests - Requests 唯一的一个非转基因的 Python HTTP 库,人类可以安全享用。
  • tqdm - 适用于Python和CLI的快速,可扩展的进度条库

感谢这些伟大优秀的Python库!

🔖版本控制

该项目使用SemVer语言化版本格式进行版本管理,你可以参阅变更记录说明了解历史变更情况。

⌛后续计划

  • 各模块持续优化和完善
  • 操作强大交互人性的前端界面实现

更多信息请参阅后续开发计划。

🙏贡献

非常热烈欢迎各位大佬一起完善本项目!

👨‍💻贡献者

你可以在贡献者文档中查看所有贡献者以及他们所做出的贡献,感谢他们让OneForAll变得更强大好用。

☕赞赏

如果你觉得这个项目帮助到了你,你可以打赏一杯咖啡以资鼓励:)

📄版权

该项目签署了GPL-3.0授权许可,详情请参阅LICENSE。

😘鸣谢

感谢网上开源的各个子域收集项目!

感谢A-Team大哥们热情无私的问题解答!

📜免责声明

本工具仅能在取得足够合法授权的企业安全建设中使用,在使用本工具过程中,您应确保自己所有行为符合当地的法律法规。 如您在使用本工具的过程中存在任何非法行为,您将自行承担所有后果,本工具所有开发者和所有贡献者不承担任何法律及连带责任。 除非您已充分阅读、完全理解并接受本协议所有条款,否则,请您不要安装并使用本工具。 您的使用行为或者您以其他任何明示或者默示方式表示接受本协议的,即视为您已阅读并同意本协议的约束。

💖Star趋势

Stargazers over time