Convert Figma logo to code with AI

antvis logoS2

⚡️ A practical visualization library for tabular analysis.

1,510
199
1,510
108

Top Related Projects

60,384

Apache ECharts is a powerful, interactive charting and data visualization library for browser

17,160

Open-source JavaScript charting library behind Plotly and Dash

109,248

Bring data to life with SVG, Canvas and HTML. :bar_chart::chart_with_upwards_trend::tada:

Highcharts JS, the JavaScript charting framework

64,568

Simple HTML5 Charts using the <canvas> tag

71,459

Generation of diagrams like flowcharts or sequence diagrams from text in a similar manner as markdown

Quick Overview

S2 (Spreadsheet 2.0) is an open-source visualization library for creating interactive and customizable spreadsheets and pivot tables. It provides a powerful set of tools for data analysis, visualization, and interaction, making it easier to build complex data applications with a spreadsheet-like interface.

Pros

  • Highly customizable and extensible, allowing for tailored spreadsheet experiences
  • Supports various data visualization types, including charts and heatmaps
  • Excellent performance, even with large datasets
  • Rich set of built-in features like sorting, filtering, and cell merging

Cons

  • Steeper learning curve compared to simpler spreadsheet libraries
  • Documentation could be more comprehensive, especially for advanced features
  • Limited community support compared to more established libraries
  • Some features may require additional configuration or custom development

Code Examples

  1. Creating a basic S2 table:
import { TableSheet } from '@antv/s2';

const s2 = new TableSheet({
  container: 'container',
  data: [
    { name: 'John', age: 30, city: 'New York' },
    { name: 'Jane', age: 25, city: 'London' },
  ],
  fields: {
    columns: ['name', 'age', 'city'],
  },
});

s2.render();
  1. Adding a custom cell renderer:
import { TableSheet, S2Event } from '@antv/s2';

const s2 = new TableSheet({
  // ... configuration
});

s2.on(S2Event.DATA_CELL_RENDER, (renderInfo) => {
  const { data, cellInfo } = renderInfo;
  if (cellInfo.fieldValue === 'age') {
    renderInfo.backgroundColor = data.age > 25 ? '#ffcccb' : '#90ee90';
  }
});

s2.render();
  1. Implementing sorting functionality:
import { TableSheet } from '@antv/s2';

const s2 = new TableSheet({
  // ... configuration
  sortParams: [
    {
      sortFieldId: 'age',
      sortMethod: 'DESC',
    },
  ],
});

s2.render();

Getting Started

To get started with S2, follow these steps:

  1. Install the library:
npm install @antv/s2
  1. Create a container element in your HTML:
<div id="container"></div>
  1. Initialize and render an S2 table:
import { TableSheet } from '@antv/s2';

const s2 = new TableSheet({
  container: 'container',
  data: yourData,
  fields: {
    columns: yourColumns,
  },
});

s2.render();

Competitor Comparisons

60,384

Apache ECharts is a powerful, interactive charting and data visualization library for browser

Pros of ECharts

  • More comprehensive and versatile, supporting a wider range of chart types
  • Larger community and ecosystem, with extensive documentation and examples
  • Better performance for handling large datasets and complex visualizations

Cons of ECharts

  • Steeper learning curve due to its extensive API and configuration options
  • Larger file size, which may impact load times for simpler visualizations
  • Less specialized for tabular data and pivot table-like structures

Code Comparison

S2 (Tabular Data Rendering):

const s2 = new PivotSheet(container, s2DataConfig, s2Options);
s2.render();

ECharts (General Chart Rendering):

const chart = echarts.init(container);
chart.setOption(chartOptions);

Key Differences

  • S2 focuses on tabular data and pivot tables, while ECharts is a general-purpose charting library
  • S2 provides more specialized features for data grid interactions and styling
  • ECharts offers a wider range of chart types and customization options

Use Cases

  • S2: Best for applications requiring interactive, spreadsheet-like data grids or pivot tables
  • ECharts: Ideal for diverse data visualization needs, including complex charts and dashboards
17,160

Open-source JavaScript charting library behind Plotly and Dash

Pros of plotly.js

  • Wider range of chart types and visualization options
  • Extensive documentation and community support
  • Built-in interactivity and responsiveness

Cons of plotly.js

  • Larger file size and potentially slower performance
  • Steeper learning curve for complex visualizations
  • Less focused on specific data structures like pivot tables

Code Comparison

S2 (for creating a pivot table):

const s2 = new PivotSheet(container, s2DataConfig, s2Options);
s2.render();

plotly.js (for creating a basic chart):

Plotly.newPlot('myDiv', data, layout);

Both libraries offer declarative ways to create visualizations, but S2 is more specialized for tabular data, while plotly.js provides a broader range of chart types. S2's API is designed specifically for pivot tables and similar structures, whereas plotly.js offers a more general-purpose charting solution.

S2 excels in handling large datasets in tabular format, providing efficient rendering and interactions for pivot tables. plotly.js, on the other hand, shines in its versatility and ability to create a wide variety of interactive charts and plots, making it suitable for diverse data visualization needs.

109,248

Bring data to life with SVG, Canvas and HTML. :bar_chart::chart_with_upwards_trend::tada:

Pros of D3

  • More versatile and flexible for creating custom visualizations
  • Larger community and ecosystem with extensive documentation
  • Supports a wide range of chart types and data visualization techniques

Cons of D3

  • Steeper learning curve, especially for complex visualizations
  • Requires more code to create basic charts compared to S2
  • Less focused on specific table and spreadsheet functionality

Code Comparison

S2 (creating a basic table):

const s2 = new Sheet({
  container: 'container',
  data: [
    { name: 'John', age: 30 },
    { name: 'Jane', age: 25 }
  ],
  fields: ['name', 'age']
});

D3 (creating a basic table):

const table = d3.select('#container').append('table');
const rows = table.selectAll('tr')
  .data([{ name: 'John', age: 30 }, { name: 'Jane', age: 25 }])
  .enter().append('tr');
rows.selectAll('td')
  .data(d => Object.values(d)).enter().append('td').text(d => d);

S2 is more focused on creating tables and spreadsheets with less code, while D3 offers more flexibility but requires more code for similar tasks. D3 excels in creating custom visualizations, while S2 provides a simpler API for tabular data representation.

Highcharts JS, the JavaScript charting framework

Pros of Highcharts

  • More extensive documentation and examples
  • Wider range of chart types and customization options
  • Larger community and ecosystem

Cons of Highcharts

  • Commercial license required for most use cases
  • Steeper learning curve due to more complex API
  • Larger file size, potentially impacting page load times

Code Comparison

S2 example:

const s2 = new Sheet(container, dataCfg, options);
s2.render();

Highcharts example:

Highcharts.chart('container', {
  series: [{
    data: [1, 2, 3, 4, 5]
  }]
});

Both libraries offer straightforward ways to create charts, but S2 focuses on spreadsheet-like data visualization, while Highcharts provides a more general-purpose charting solution.

S2 is designed specifically for multi-dimensional data analysis and visualization, making it more suitable for complex data grids and pivot tables. Highcharts, on the other hand, excels in creating a wide variety of chart types for different data visualization needs.

While Highcharts offers more flexibility and options, S2 provides a simpler API for specific use cases related to tabular data visualization. The choice between the two depends on the project requirements, budget constraints, and the specific types of visualizations needed.

64,568

Simple HTML5 Charts using the <canvas> tag

Pros of Chart.js

  • Simpler API and easier to get started for basic charts
  • Wider browser compatibility, including older versions
  • Smaller file size, leading to faster load times

Cons of Chart.js

  • Less customizable for complex visualizations
  • Limited support for advanced data analysis features
  • Fewer chart types available out-of-the-box

Code Comparison

S2 example:

const s2 = new PivotSheet(container, {
  data: [{ /* data */ }],
  options: {
    width: 600,
    height: 480,
  },
});
s2.render();

Chart.js example:

const ctx = document.getElementById('myChart').getContext('2d');
const chart = new Chart(ctx, {
  type: 'bar',
  data: { /* data */ },
  options: { /* options */ }
});

S2 focuses on pivot tables and multi-dimensional data analysis, offering more complex visualization capabilities. It provides a powerful API for customizing and interacting with data grids.

Chart.js, on the other hand, is designed for simpler, more common chart types like bar, line, and pie charts. It offers an easy-to-use API that's great for quickly creating basic charts but may be limited for more advanced use cases.

Both libraries have their strengths, and the choice between them depends on the specific requirements of your project, such as the complexity of data visualization needed and the level of customization required.

71,459

Generation of diagrams like flowcharts or sequence diagrams from text in a similar manner as markdown

Pros of Mermaid

  • Simpler syntax for creating diagrams and charts
  • Wider variety of diagram types (flowcharts, sequence diagrams, Gantt charts, etc.)
  • Easier integration with Markdown documents

Cons of Mermaid

  • Less suitable for complex data visualization and analysis
  • Limited customization options for chart appearance
  • Not optimized for large datasets or real-time updates

Code Comparison

Mermaid example:

graph TD
    A[Start] --> B{Is it?}
    B -->|Yes| C[OK]
    B -->|No| D[End]

S2 example:

const s2 = new Sheet('#container', {
  data: [
    { type: 'Furniture', sales: 38 },
    { type: 'Food', sales: 52 },
    { type: 'Electronics', sales: 61 }
  ],
  fields: {
    rows: ['type'],
    values: ['sales']
  }
});
s2.render();

While Mermaid focuses on creating simple diagrams with a text-based syntax, S2 is more suited for creating interactive and customizable data tables and charts. Mermaid is better for quick visualizations in documentation, while S2 excels in complex data analysis and presentation scenarios.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

language 简体中文 | English

S2

开箱即用的多维可视分析表格。

npm latest version ci test status test coverage release date

npm bundle size GitHub discussions issues helper License: MIT@AntV contributors issues closed pr welcome

S2 是 AntV 在多维交叉分析表格领域的解决方案,完全基于数据驱动的方式。通过提供底层能力库,基础组件,业务场景组件以及自由扩展的能力,让开发者基于自身场景自由选择,既能开箱即用,又能自由发挥。

🏠 官网

homepage

✨ 特性

  1. 多维交叉分析:告别单一分析维度,全面拥抱任意维度的自由组合分析。
  2. 高性能:能支持全量百万数据下 <8s 渲染,也能通过局部下钻来实现秒级渲染。
  3. 高扩展性:支持任意的自定义扩展(包括但不局限于布局,样式,交互,数据 hook 流等)。
  4. 开箱即用:提供不同分析场景下开箱即用的 React, Vue3 版本表组件及配套分析组件,只需要简单的配置即可轻松实现复杂场景的表渲染。
  5. 可交互:支持丰富的交互形式(单选、圈选、行选、列选、冻结行头、宽高拖拽,自定义交互等)

📦 安装

$ npm install @antv/s2 --save
# yarn add @antv/s2
# pnpm add @antv/s2

🔨 使用

1. 数据准备

s2DataConfig
const s2DataConfig = {
  fields: {
    rows: ['province', 'city'],
    columns: ['type'],
    values: ['price'],
  },
  data: [
     {
      province: '浙江',
      city: '杭州',
      type: '笔',
      price: '1',
    },
    {
      province: '浙江',
      city: '杭州',
      type: '纸张',
      price: '2',
    },
    {
      province: '浙江',
      city: '舟山',
      type: '笔',
      price: '17',
    },
    {
      province: '浙江',
      city: '舟山',
      type: '纸张',
      price: '0.5',
    },
    {
      province: '吉林',
      city: '长春',
      type: '笔',
      price: '8',
    },
    {
      province: '吉林',
      city: '白山',
      type: '笔',
      price: '9',
    },
    {
      province: '吉林',
      city: '长春',
      type: ' 纸张',
      price: '3',
    },
    {
      province: '吉林',
      city: '白山',
      type: '纸张',
      price: '1',
    },
  ],
  meta: [
    {
      field: 'price',
      name: 'ä»·æ ¼',
    },
    {
      field: 'province',
      name: '省份',
    },
    {
      field: 'city',
      name: '城市',
    },
    {
      field: 'type',
      name: '类别',
    },
    {
      field: 'sub_type',
      name: '子类别',
    },
  ]
};

2. 配置项准备

const s2Options = {
  width: 600,
  height: 600,
}

3. 渲染

<div id="container" />
import { PivotSheet } from '@antv/s2';

async function bootstrap() {
  const container = document.getElementById('container');

  const s2 = new PivotSheet(container, s2DataConfig, s2Options);

  await s2.render();
}

bootstrap()

4. 结果

result

📦 版本

包名稳定版包大小下载量
@antv/s2latestsizedownload
@antv/s2-reactlatestsizedownload
@antv/s2-react-componentslatestsizedownload
@antv/s2-vue(停止维护)latestsizedownload

🖥️ 兼容环境

Edge
Edge
Firefox
Firefox
Chrome
Chrome
Safari
Safari
Edgelast 2 versionslast 2 versionslast 2 versions

@antv/s2-react 和 @antv/s2-vue 见官方 React JavaScript 环境要求 和 Vite 浏览器兼容性

🙋‍♂️ 问题反馈

如果你遇到了问题,或者对 Issues 和 Discussions 列表的问题感兴趣,可以直接认领并尝试修复,帮助 S2 变得更好,期待在 贡献者列表 里看见你的头像。

请严格按照模版 提交 Issue 或在 Discussions 提问,在这之前强烈建议阅读 《⚠️ 提 Issue 前必读》

🤝 参与贡献 & ⌨️ 本地开发

S2 非常需要你的共建,请阅读 贡献指南 后提交 PR.

👁️ 项目洞察

Alt

👬 贡献者们

https://github.com/antvis/s2/graphs/contributors

👤 作者

@AntV

📄 License

MIT@AntV

NPM DownloadsLast 30 Days