Convert Figma logo to code with AI

catalyst-team logocatalyst

Accelerated deep learning R&D

3,304
390
3,304
4

Top Related Projects

4,516

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

34,860

Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.

35,868

DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.

14,221

Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

18,503

Open source platform for the machine learning lifecycle

9,007

The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.

Quick Overview

Catalyst is a PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and code/ideas reuse. Catalyst provides a high-level API for training loops, allowing researchers and developers to focus on the model architecture and problem-solving rather than boilerplate code.

Pros

  • Highly customizable and flexible, allowing for easy experimentation
  • Provides a rich set of callbacks and metrics for monitoring and optimizing training
  • Supports distributed training and mixed precision out of the box
  • Integrates well with other popular libraries like Optuna for hyperparameter tuning

Cons

  • Steeper learning curve compared to some other PyTorch wrappers
  • Documentation can be inconsistent or lacking in some areas
  • May have more overhead for simple projects compared to vanilla PyTorch
  • Smaller community compared to some other deep learning frameworks

Code Examples

  1. Basic training loop with Catalyst:
from catalyst import dl

# Define your model, criterion, optimizer, and datasets
model = MyModel()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
train_dataset = MyDataset()
valid_dataset = MyDataset()

# Create Catalyst Runner
runner = dl.SupervisedRunner()

# Run the training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders={
        "train": DataLoader(train_dataset),
        "valid": DataLoader(valid_dataset)
    },
    num_epochs=10,
    callbacks=[dl.AccuracyCallback()]
)
  1. Custom callback for logging:
from catalyst import dl

class MyCallback(dl.Callback):
    def on_epoch_end(self, runner):
        logger.info(f"Epoch {runner.epoch} ended")

runner.train(
    # ... other parameters ...
    callbacks=[MyCallback()]
)
  1. Distributed training with Catalyst:
from catalyst.dl import DDPRunner

runner = DDPRunner()

runner.train(
    # ... other parameters ...
    num_gpus=4  # Specify the number of GPUs to use
)

Getting Started

To get started with Catalyst, first install it using pip:

pip install catalyst

Then, import the necessary modules and create a basic training script:

from catalyst import dl
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset

# Create a simple model and dataset
model = nn.Linear(10, 1)
dataset = TensorDataset(torch.randn(100, 10), torch.randn(100, 1))
loader = DataLoader(dataset, batch_size=32)

# Define runner and train
runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=nn.MSELoss(),
    optimizer=torch.optim.Adam(model.parameters()),
    loaders={"train": loader},
    num_epochs=5,
    verbose=True
)

This basic example demonstrates how to set up a simple training loop with Catalyst. For more advanced usage, refer to the official documentation and examples.

Competitor Comparisons

4,516

High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

Pros of Ignite

  • More lightweight and flexible, allowing for easier customization
  • Better integration with PyTorch ecosystem and tools
  • More extensive documentation and examples

Cons of Ignite

  • Less built-in functionality for complex tasks
  • Steeper learning curve for beginners
  • Fewer pre-built metrics and callbacks

Code Comparison

Catalyst:

from catalyst import dl

runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=10,
    callbacks=[dl.AccuracyCallback()]
)

Ignite:

from ignite.engine import create_supervised_trainer, create_supervised_evaluator
from ignite.metrics import Accuracy

trainer = create_supervised_trainer(model, optimizer, criterion)
evaluator = create_supervised_evaluator(model, metrics={'accuracy': Accuracy()})

trainer.run(train_loader, max_epochs=10)

Both Catalyst and Ignite provide high-level APIs for training PyTorch models, but Ignite offers more granular control over the training process. Catalyst's API is more concise and easier to use for standard tasks, while Ignite's approach allows for greater customization at the cost of verbosity.

34,860

Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.

Pros of Ray

  • More comprehensive distributed computing framework, supporting various workloads beyond machine learning
  • Larger community and ecosystem, with extensive documentation and third-party integrations
  • Better scalability for large-scale distributed applications and cluster management

Cons of Ray

  • Steeper learning curve due to its broader scope and more complex API
  • Potentially overkill for simpler machine learning projects that don't require distributed computing
  • Higher resource overhead for small-scale tasks

Code Comparison

Ray example:

import ray

@ray.remote
def f(x):
    return x * x

futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))

Catalyst example:

from catalyst import dl

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        return self.model(batch)

runner = CustomRunner()
35,868

DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.

Pros of DeepSpeed

  • Highly optimized for large-scale distributed training, especially for transformer models
  • Offers advanced features like ZeRO optimizer stages and pipeline parallelism
  • Seamless integration with popular frameworks like PyTorch and Hugging Face Transformers

Cons of DeepSpeed

  • Steeper learning curve due to its focus on advanced optimization techniques
  • May be overkill for smaller projects or simpler model architectures
  • Less emphasis on experiment tracking and logging compared to Catalyst

Code Comparison

DeepSpeed:

model_engine, optimizer, _, _ = deepspeed.initialize(
    args=args,
    model=model,
    model_parameters=params
)

Catalyst:

runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=10,
    callbacks=[dl.AccuracyCallback()]
)

DeepSpeed focuses on distributed training initialization, while Catalyst provides a higher-level API for training loops and experiment management. DeepSpeed is more suitable for large-scale projects requiring advanced optimization, whereas Catalyst offers a more user-friendly approach for general deep learning experiments.

14,221

Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Pros of Horovod

  • Specializes in distributed deep learning, offering excellent scalability across multiple GPUs and nodes
  • Supports multiple deep learning frameworks (TensorFlow, PyTorch, MXNet)
  • Integrates well with popular cloud platforms and cluster managers

Cons of Horovod

  • Steeper learning curve, especially for those new to distributed training
  • Requires more setup and configuration compared to Catalyst
  • Less focus on experiment management and logging features

Code Comparison

Horovod (distributed training):

import horovod.torch as hvd

hvd.init()
torch.cuda.set_device(hvd.local_rank())
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)

Catalyst (experiment setup):

from catalyst import dl

runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=10,
    callbacks=[dl.AccuracyCallback()]
)
18,503

Open source platform for the machine learning lifecycle

Pros of MLflow

  • Broader scope: MLflow covers experiment tracking, model management, and deployment, while Catalyst focuses primarily on training loops
  • Larger community and ecosystem: More integrations, plugins, and third-party support
  • Language-agnostic: Supports multiple programming languages, not just Python

Cons of MLflow

  • Steeper learning curve: More complex setup and configuration due to its broader feature set
  • Heavier weight: Requires more dependencies and resources compared to Catalyst's lightweight approach
  • Less opinionated: Provides more flexibility but less structure for organizing deep learning experiments

Code Comparison

MLflow:

import mlflow

mlflow.start_run()
mlflow.log_param("learning_rate", 0.01)
mlflow.log_metric("accuracy", 0.95)
mlflow.end_run()

Catalyst:

from catalyst import dl

runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=10,
    callbacks=[dl.AccuracyCallback()]
)
9,007

The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.

Pros of wandb

  • More comprehensive experiment tracking and visualization tools
  • Broader language and framework support beyond PyTorch
  • Larger community and more extensive documentation

Cons of wandb

  • Requires internet connection for full functionality
  • Potential privacy concerns with cloud-based storage of experiment data
  • Steeper learning curve for beginners compared to Catalyst

Code Comparison

wandb:

import wandb

wandb.init(project="my-project")
wandb.config.hyperparameters = {
    "learning_rate": 0.01,
    "epochs": 100,
}
wandb.log({"loss": 0.5, "accuracy": 0.8})

Catalyst:

from catalyst import dl

runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=100,
    logdir="./logs",
)

Both wandb and Catalyst offer tools for machine learning experiment tracking and management. wandb provides a more comprehensive suite of visualization and collaboration tools, while Catalyst focuses on simplifying PyTorch training loops. wandb's cloud-based approach offers broader accessibility but may raise privacy concerns, whereas Catalyst's local logging is more privacy-friendly but potentially less convenient for remote collaboration.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

Catalyst logo

Accelerated Deep Learning R&D

CodeFactor Pipi version Docs Docker PyPI Status

Twitter Telegram Slack Github contributors

codestyle docs catalyst integrations

python python python

os os os

Catalyst is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop.
Break the cycle – use the Catalyst!

Catalyst at PyTorch Ecosystem Day 2021

Catalyst poster

Catalyst at PyTorch Developer Day 2021

Catalyst poster


Getting started

pip install -U catalyst
import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)
loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=True), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
}

runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)

# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5)),
        dl.PrecisionRecallF1SupportCallback(input_key="logits", target_key="targets"),
    ],
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
)

# model evaluation
metrics = runner.evaluate_loader(
    loader=loaders["valid"],
    callbacks=[dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5))],
)

# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10

# model post-processing
model = runner.model.cpu()
batch = next(iter(loaders["valid"]))[0]
utils.trace_model(model=model, batch=batch)
utils.quantize_model(model=model)
utils.prune_model(model=model, pruning_fn="l1_unstructured", amount=0.8)
utils.onnx_export(model=model, batch=batch, file="./logs/mnist.onnx", verbose=True)

Step-by-step Guide

  1. Start with Catalyst — A PyTorch Framework for Accelerated Deep Learning R&D introduction.
  2. Try notebook tutorials or check minimal examples for first deep dive.
  3. Read blog posts with use-cases and guides.
  4. Learn machine learning with our "Deep Learning with Catalyst" course.
  5. And finally, join our slack if you want to chat with the team and contributors.

Table of Contents

Overview

Catalyst helps you implement compact but full-featured Deep Learning pipelines with just a few lines of code. You get a training loop with metrics, early-stopping, model checkpointing, and other features without the boilerplate.

Installation

Generic installation:

pip install -U catalyst
Specialized versions, extra requirements might apply

pip install catalyst[ml]         # installs ML-based Catalyst
pip install catalyst[cv]         # installs CV-based Catalyst
# master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade
# all available extensions are listed here:
# https://github.com/catalyst-team/catalyst/blob/master/setup.py

Catalyst is compatible with: Python 3.7+. PyTorch 1.4+.
Tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10, and Windows Subsystem for Linux.

Documentation

Minimal Examples

CustomRunner – PyTorch for-loop decomposition

import os
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
optimizer = optim.Adam(model.parameters(), lr=0.02)

train_data = MNIST(os.getcwd(), train=True)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
    "train": DataLoader(train_data, batch_size=32),
    "valid": DataLoader(valid_data, batch_size=32),
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.engine.device))

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveMetric(compute_on_call=False)
            for key in ["loss", "accuracy01", "accuracy03"]
        }

    def handle_batch(self, batch):
        # model train/valid step
        # unpack the batch
        x, y = batch
        # run model forward pass
        logits = self.model(x)
        # compute the loss
        loss = F.cross_entropy(logits, y)
        # compute the metrics
        accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
        # log metrics
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)
        # run model backward pass
        if self.is_train_loader:
            self.engine.backward(loss)
            self.optimizer.step()
            self.optimizer.zero_grad()

    def on_loader_end(self, runner):
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
)
# model inference
for logits in runner.predict_loader(loader=loaders["valid"]):
    assert logits.detach().cpu().numpy().shape[-1] == 10

ML - linear regression

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    num_epochs=8,
    verbose=True,
)

ML - multiclass classification

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples,) * num_classes).to(torch.int64)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=3,
    valid_loader="valid",
    valid_metric="accuracy03",
    minimize_valid_metric=False,
    verbose=True,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=num_classes),
        # uncomment for extra metrics:
        # dl.PrecisionRecallF1SupportCallback(
        #     input_key="logits", target_key="targets", num_classes=num_classes
        # ),
        # dl.AUCCallback(input_key="logits", target_key="targets"),
        # catalyst[ml] required ``pip install catalyst[ml]``
        # dl.ConfusionMatrixCallback(
        #     input_key="logits", target_key="targets", num_classes=num_classes
        # ),
    ],
)

ML - multilabel classification

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=3,
    valid_loader="valid",
    valid_metric="accuracy01",
    minimize_valid_metric=False,
    verbose=True,
    callbacks=[
        dl.BatchTransformCallback(
            transform=torch.sigmoid,
            scope="on_batch_end",
            input_key="logits",
            output_key="scores"
        ),
        dl.AUCCallback(input_key="scores", target_key="targets"),
        # uncomment for extra metrics:
        # dl.MultilabelAccuracyCallback(input_key="scores", target_key="targets", threshold=0.5),
        # dl.MultilabelPrecisionRecallF1SupportCallback(
        #     input_key="scores", target_key="targets", threshold=0.5
        # ),
    ]
)

ML - multihead classification

import torch
from torch import nn, optim
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes1, num_classes2 = int(1e4), int(1e1), 4, 10
X = torch.rand(num_samples, num_features)
y1 = (torch.rand(num_samples,) * num_classes1).to(torch.int64)
y2 = (torch.rand(num_samples,) * num_classes2).to(torch.int64)

# pytorch loaders
dataset = TensorDataset(X, y1, y2)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

class CustomModule(nn.Module):
    def __init__(self, in_features: int, out_features1: int, out_features2: int):
        super().__init__()
        self.shared = nn.Linear(in_features, 128)
        self.head1 = nn.Linear(128, out_features1)
        self.head2 = nn.Linear(128, out_features2)

    def forward(self, x):
        x = self.shared(x)
        y1 = self.head1(x)
        y2 = self.head2(x)
        return y1, y2

# model, criterion, optimizer, scheduler
model = CustomModule(num_features, num_classes1, num_classes2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2])

class CustomRunner(dl.Runner):
    def handle_batch(self, batch):
        x, y1, y2 = batch
        y1_hat, y2_hat = self.model(x)
        self.batch = {
            "features": x,
            "logits1": y1_hat,
            "logits2": y2_hat,
            "targets1": y1,
            "targets2": y2,
        }

# model training
runner = CustomRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    num_epochs=3,
    verbose=True,
    callbacks=[
        dl.CriterionCallback(metric_key="loss1", input_key="logits1", target_key="targets1"),
        dl.CriterionCallback(metric_key="loss2", input_key="logits2", target_key="targets2"),
        dl.MetricAggregationCallback(metric_key="loss", metrics=["loss1", "loss2"], mode="mean"),
        dl.BackwardCallback(metric_key="loss"),
        dl.OptimizerCallback(metric_key="loss"),
        dl.SchedulerCallback(),
        dl.AccuracyCallback(
            input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_"
        ),
        dl.AccuracyCallback(
            input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_"
        ),
        # catalyst[ml] required ``pip install catalyst[ml]``
        # dl.ConfusionMatrixCallback(
        #     input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_cm"
        # ),
        # dl.ConfusionMatrixCallback(
        #     input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_cm"
        # ),
        dl.CheckpointCallback(
            logdir="./logs/one",
            loader_key="valid", metric_key="one_accuracy01", minimize=False, topk=1
        ),
        dl.CheckpointCallback(
            logdir="./logs/two",
            loader_key="valid", metric_key="two_accuracy03", minimize=False, topk=3
        ),
    ],
    loggers={"console": dl.ConsoleLogger(), "tb": dl.TensorboardLogger("./logs/tb")},
)

ML – RecSys

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_users, num_features, num_items = int(1e4), int(1e1), 10
X = torch.rand(num_users, num_features)
y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_items)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    num_epochs=3,
    verbose=True,
    callbacks=[
        dl.BatchTransformCallback(
            transform=torch.sigmoid,
            scope="on_batch_end",
            input_key="logits",
            output_key="scores"
        ),
        dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"),
        # uncomment for extra metrics:
        # dl.AUCCallback(input_key="scores", target_key="targets"),
        # dl.HitrateCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        # dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        # dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        # dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        dl.BackwardCallback(metric_key="loss"),
        dl.OptimizerCallback(metric_key="loss"),
        dl.SchedulerCallback(),
        dl.CheckpointCallback(
            logdir="./logs", loader_key="valid", metric_key="loss", minimize=True
        ),
    ]
)

CV - MNIST classification

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

train_data = MNIST(os.getcwd(), train=True)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
    "train": DataLoader(train_data, batch_size=32),
    "valid": DataLoader(valid_data, batch_size=32),
}

runner = dl.SupervisedRunner()
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
# uncomment for extra metrics:
#     callbacks=[
#         dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=10),
#         dl.PrecisionRecallF1SupportCallback(
#             input_key="logits", target_key="targets", num_classes=10
#         ),
#         dl.AUCCallback(input_key="logits", target_key="targets"),
#         # catalyst[ml] required ``pip install catalyst[ml]``
#         dl.ConfusionMatrixCallback(
#             input_key="logits", target_key="targets", num_classes=num_classes
#         ),
#     ]
)

CV - MNIST segmentation

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.losses import IoULoss


model = nn.Sequential(
    nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(),
    nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(),
)
criterion = IoULoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

train_data = MNIST(os.getcwd(), train=True)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
    "train": DataLoader(train_data, batch_size=32),
    "valid": DataLoader(valid_data, batch_size=32),
}

class CustomRunner(dl.SupervisedRunner):
    def handle_batch(self, batch):
        x = batch[self._input_key]
        x_noise = (x + torch.rand_like(x)).clamp_(0, 1)
        x_ = self.model(x_noise)
        self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x}

runner = CustomRunner(
    input_key="features", output_key="scores", target_key="targets", loss_key="loss"
)
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.IOUCallback(input_key="scores", target_key="targets"),
        dl.DiceCallback(input_key="scores", target_key="targets"),
        dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2),
    ],
    logdir="./logdir",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
)

CV - MNIST metric learning

import os
from torch.optim import Adam
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data import HardTripletsSampler
from catalyst.contrib.datasets import MnistMLDataset, MnistQGDataset
from catalyst.contrib.losses import TripletMarginLossWithSampler
from catalyst.contrib.models import MnistSimpleNet
from catalyst.data.sampler import BatchBalanceClassSampler


# 1. train and valid loaders
train_dataset = MnistMLDataset(root=os.getcwd())
sampler = BatchBalanceClassSampler(
    labels=train_dataset.get_labels(), num_classes=5, num_samples=10, num_batches=10
)
train_loader = DataLoader(dataset=train_dataset, batch_sampler=sampler)

valid_dataset = MnistQGDataset(root=os.getcwd(), gallery_fraq=0.2)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=1024)

# 2. model and optimizer
model = MnistSimpleNet(out_features=16)
optimizer = Adam(model.parameters(), lr=0.001)

# 3. criterion with triplets sampling
sampler_inbatch = HardTripletsSampler(norm_required=False)
criterion = TripletMarginLossWithSampler(margin=0.5, sampler_inbatch=sampler_inbatch)

# 4. training with catalyst Runner
class CustomRunner(dl.SupervisedRunner):
    def handle_batch(self, batch) -> None:
        if self.is_train_loader:
            images, targets = batch["features"].float(), batch["targets"].long()
            features = self.model(images)
            self.batch = {"embeddings": features, "targets": targets,}
        else:
            images, targets, is_query = \
                batch["features"].float(), batch["targets"].long(), batch["is_query"].bool()
            features = self.model(images)
            self.batch = {"embeddings": features, "targets": targets, "is_query": is_query}

callbacks = [
    dl.ControlFlowCallbackWrapper(
        dl.CriterionCallback(input_key="embeddings", target_key="targets", metric_key="loss"),
        loaders="train",
    ),
    dl.ControlFlowCallbackWrapper(
        dl.CMCScoreCallback(
            embeddings_key="embeddings",
            labels_key="targets",
            is_query_key="is_query",
            topk=[1],
        ),
        loaders="valid",
    ),
    dl.PeriodicLoaderCallback(
        valid_loader_key="valid", valid_metric_key="cmc01", minimize=False, valid=2
    ),
]

runner = CustomRunner(input_key="features", output_key="embeddings")
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    callbacks=callbacks,
    loaders={"train": train_loader, "valid": valid_loader},
    verbose=False,
    logdir="./logs",
    valid_loader="valid",
    valid_metric="cmc01",
    minimize_valid_metric=False,
    num_epochs=10,
)

CV - MNIST GAN

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.layers import GlobalMaxPool2d, Lambda

latent_dim = 128
generator = nn.Sequential(
    # We want to generate 128 coefficients to reshape into a 7x7x128 map
    nn.Linear(128, 128 * 7 * 7),
    nn.LeakyReLU(0.2, inplace=True),
    Lambda(lambda x: x.view(x.size(0), 128, 7, 7)),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(128, 1, (7, 7), padding=3),
    nn.Sigmoid(),
)
discriminator = nn.Sequential(
    nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    GlobalMaxPool2d(),
    nn.Flatten(),
    nn.Linear(128, 1),
)

model = nn.ModuleDict({"generator": generator, "discriminator": discriminator})
criterion = {"generator": nn.BCEWithLogitsLoss(), "discriminator": nn.BCEWithLogitsLoss()}
optimizer = {
    "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
    "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
}
train_data = MNIST(os.getcwd(), train=False)
loaders = {"train": DataLoader(train_data, batch_size=32)}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        batch_size = 1
        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device)
        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        return generated_images

    def handle_batch(self, batch):
        real_images, _ = batch
        batch_size = real_images.shape[0]

        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device)

        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        # Combine them with real images
        combined_images = torch.cat([generated_images, real_images])

        # Assemble labels discriminating real from fake images
        labels = \
            torch.cat([torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))]).to(self.engine.device)
        # Add random noise to the labels - important trick!
        labels += 0.05 * torch.rand(labels.shape).to(self.engine.device)

        # Discriminator forward
        combined_predictions = self.model["discriminator"](combined_images)

        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device)
        # Assemble labels that say "all real images"
        misleading_labels = torch.zeros((batch_size, 1)).to(self.engine.device)

        # Generator forward
        generated_images = self.model["generator"](random_latent_vectors)
        generated_predictions = self.model["discriminator"](generated_images)

        self.batch = {
            "combined_predictions": combined_predictions,
            "labels": labels,
            "generated_predictions": generated_predictions,
            "misleading_labels": misleading_labels,
        }


runner = CustomRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    callbacks=[
        dl.CriterionCallback(
            input_key="combined_predictions",
            target_key="labels",
            metric_key="loss_discriminator",
            criterion_key="discriminator",
        ),
        dl.BackwardCallback(metric_key="loss_discriminator"),
        dl.OptimizerCallback(
            optimizer_key="discriminator",
            metric_key="loss_discriminator",
        ),
        dl.CriterionCallback(
            input_key="generated_predictions",
            target_key="misleading_labels",
            metric_key="loss_generator",
            criterion_key="generator",
        ),
        dl.BackwardCallback(metric_key="loss_generator"),
        dl.OptimizerCallback(
            optimizer_key="generator",
            metric_key="loss_generator",
        ),
    ],
    valid_loader="train",
    valid_metric="loss_generator",
    minimize_valid_metric=True,
    num_epochs=20,
    verbose=True,
    logdir="./logs_gan",
)

# visualization (matplotlib required):
# import matplotlib.pyplot as plt
# %matplotlib inline
# plt.imshow(runner.predict_batch(None)[0, 0].cpu().numpy())

CV - MNIST VAE

import os
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.contrib.datasets import MNIST

LOG_SCALE_MAX = 2
LOG_SCALE_MIN = -10

def normal_sample(loc, log_scale):
    scale = torch.exp(0.5 * log_scale)
    return loc + scale * torch.randn_like(scale)

class VAE(nn.Module):
    def __init__(self, in_features, hid_features):
        super().__init__()
        self.hid_features = hid_features
        self.encoder = nn.Linear(in_features, hid_features * 2)
        self.decoder = nn.Sequential(nn.Linear(hid_features, in_features), nn.Sigmoid())

    def forward(self, x, deterministic=False):
        z = self.encoder(x)
        bs, z_dim = z.shape

        loc, log_scale = z[:, : z_dim // 2], z[:, z_dim // 2 :]
        log_scale = torch.clamp(log_scale, LOG_SCALE_MIN, LOG_SCALE_MAX)

        z_ = loc if deterministic else normal_sample(loc, log_scale)
        z_ = z_.view(bs, -1)
        x_ = self.decoder(z_)

        return x_, loc, log_scale

class CustomRunner(dl.IRunner):
    def __init__(self, hid_features, logdir, engine):
        super().__init__()
        self.hid_features = hid_features
        self._logdir = logdir
        self._engine = engine

    def get_engine(self):
        return self._engine

    def get_loggers(self):
        return {
            "console": dl.ConsoleLogger(),
            "csv": dl.CSVLogger(logdir=self._logdir),
            "tensorboard": dl.TensorboardLogger(logdir=self._logdir),
        }

    @property
    def num_epochs(self) -> int:
        return 1

    def get_loaders(self):
        loaders = {
            "train": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
            "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
        }
        return loaders

    def get_model(self):
        model = self.model if self.model is not None else VAE(28 * 28, self.hid_features)
        return model

    def get_optimizer(self, model):
        return optim.Adam(model.parameters(), lr=0.02)

    def get_callbacks(self):
        return {
            "backward": dl.BackwardCallback(metric_key="loss"),
            "optimizer": dl.OptimizerCallback(metric_key="loss"),
            "checkpoint": dl.CheckpointCallback(
                self._logdir,
                loader_key="valid",
                metric_key="loss",
                minimize=True,
                topk=3,
            ),
        }

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveMetric(compute_on_call=False)
            for key in ["loss_ae", "loss_kld", "loss"]
        }

    def handle_batch(self, batch):
        x, _ = batch
        x = x.view(x.size(0), -1)
        x_, loc, log_scale = self.model(x, deterministic=not self.is_train_loader)

        loss_ae = F.mse_loss(x_, x)
        loss_kld = (
            -0.5 * torch.sum(1 + log_scale - loc.pow(2) - log_scale.exp(), dim=1)
        ).mean()
        loss = loss_ae + loss_kld * 0.01

        self.batch_metrics = {"loss_ae": loss_ae, "loss_kld": loss_kld, "loss": loss}
        for key in ["loss_ae", "loss_kld", "loss"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)

    def on_loader_end(self, runner):
        for key in ["loss_ae", "loss_kld", "loss"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

    def predict_batch(self, batch):
        random_latent_vectors = torch.randn(1, self.hid_features).to(self.engine.device)
        generated_images = self.model.decoder(random_latent_vectors).detach()
        return generated_images

runner = CustomRunner(128, "./logs", dl.CPUEngine())
runner.run()
# visualization (matplotlib required):
# import matplotlib.pyplot as plt
# %matplotlib inline
# plt.imshow(runner.predict_batch(None)[0].cpu().numpy().reshape(28, 28))

AutoML - hyperparameters optimization with Optuna

import os
import optuna
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST


def objective(trial):
    lr = trial.suggest_loguniform("lr", 1e-3, 1e-1)
    num_hidden = int(trial.suggest_loguniform("num_hidden", 32, 128))

    train_data = MNIST(os.getcwd(), train=True)
    valid_data = MNIST(os.getcwd(), train=False)
    loaders = {
        "train": DataLoader(train_data, batch_size=32),
        "valid": DataLoader(valid_data, batch_size=32),
    }
    model = nn.Sequential(
        nn.Flatten(), nn.Linear(784, num_hidden), nn.ReLU(), nn.Linear(num_hidden, 10)
    )
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()

    runner = dl.SupervisedRunner(input_key="features", output_key="logits", target_key="targets")
    runner.train(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        loaders=loaders,
        callbacks={
            "accuracy": dl.AccuracyCallback(
                input_key="logits", target_key="targets", num_classes=10
            ),
            # catalyst[optuna] required ``pip install catalyst[optuna]``
            "optuna": dl.OptunaPruningCallback(
                loader_key="valid", metric_key="accuracy01", minimize=False, trial=trial
            ),
        },
        num_epochs=3,
    )
    score = trial.best_score
    return score

study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.MedianPruner(
        n_startup_trials=1, n_warmup_steps=0, interval_steps=1
    ),
)
study.optimize(objective, n_trials=3, timeout=300)
print(study.best_value, study.best_params)

Config API - minimal example

runner:
  _target_: catalyst.runners.SupervisedRunner
  model:
    _var_: model
    _target_: torch.nn.Sequential
    args:
      - _target_: torch.nn.Flatten
      - _target_: torch.nn.Linear
        in_features: 784  # 28 * 28
        out_features: 10
  input_key: features
  output_key: &output_key logits
  target_key: &target_key targets
  loss_key: &loss_key loss

run:
  # ≈ stage 1
  - _call_: train  # runner.train(...)

    criterion:
      _target_: torch.nn.CrossEntropyLoss

    optimizer:
      _target_: torch.optim.Adam
      params:  # model.parameters()
        _var_: model.parameters
      lr: 0.02

    loaders:
      train:
        _target_: torch.utils.data.DataLoader
        dataset:
          _target_: catalyst.contrib.datasets.MNIST
          root: data
          train: y
        batch_size: 32

      &valid_loader_key valid:
        &valid_loader
        _target_: torch.utils.data.DataLoader
        dataset:
          _target_: catalyst.contrib.datasets.MNIST
          root: data
          train: n
        batch_size: 32

    callbacks:
      - &accuracy_metric
        _target_: catalyst.callbacks.AccuracyCallback
        input_key: *output_key
        target_key: *target_key
        topk: [1,3,5]
      - _target_: catalyst.callbacks.PrecisionRecallF1SupportCallback
        input_key: *output_key
        target_key: *target_key

    num_epochs: 1
    logdir: logs
    valid_loader: *valid_loader_key
    valid_metric: *loss_key
    minimize_valid_metric: y
    verbose: y

  # ≈ stage 2
  - _call_: evaluate_loader  # runner.evaluate_loader(...)
    loader: *valid_loader
    callbacks:
      - *accuracy_metric

catalyst-run --config example.yaml

Tests

All Catalyst code, features, and pipelines are fully tested. We also have our own catalyst-codestyle and a corresponding pre-commit hook. During testing, we train a variety of different models: image classification, image segmentation, text classification, GANs, and much more. We then compare their convergence metrics in order to verify the correctness of the training procedure and its reproducibility. As a result, Catalyst provides fully tested and reproducible best practices for your deep learning research and development.

Blog Posts

Talks

Community

Accelerated with Catalyst

Research Papers

Blog Posts

Competitions

Toolkits

Other

See other projects at the GitHub dependency graph.

If your project implements a paper, a notable use-case/tutorial, or a Kaggle competition solution, or if your code simply presents interesting results and uses Catalyst, we would be happy to add your project to the list above! Do not hesitate to send us a PR with a brief description of the project similar to the above.

Contribution Guide

We appreciate all contributions. If you are planning to contribute back bug-fixes, there is no need to run that by us; just send a PR. If you plan to contribute new features, new utility functions, or extensions, please open an issue first and discuss it with us.

User Feedback

We've created feedback@catalyst-team.com as an additional channel for user feedback.

  • If you like the project and want to thank us, this is the right place.
  • If you would like to start a collaboration between your team and Catalyst team to improve Deep Learning R&D, you are always welcome.
  • If you don't like Github Issues and prefer email, feel free to email us.
  • Finally, if you do not like something, please, share it with us, and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Acknowledgments

Since the beginning of the Сatalyst development, a lot of people have influenced it in a lot of different ways.

Catalyst.Team

Catalyst.Contributors

Trusted by

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Catalyst - Accelerated deep learning R&D},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}