Convert Figma logo to code with AI

cawa-93 logovite-electron-builder

Secure boilerplate for Electron app based on Vite. TypeScript + Vue/React/Angular/Svelte/Vanilla

2,297
256
2,297
4

Top Related Projects

🥳 Really simple Electron + Vite + Vue boilerplate.

Clone to try a simple Electron app

A Foundation for Scalable Cross-Platform Apps

Easily Build Your Vue.js App For Desktop With Electron

Ultra-fast bootstrapping with Angular and Electron :speedboat:

6,407

:electron: A complete tool for building and publishing Electron applications

Quick Overview

Vite-electron-builder is a template for building Electron applications using Vite, Vue 3, and TypeScript. It provides a robust setup for creating cross-platform desktop applications with a modern web technology stack, offering hot reloading, efficient builds, and a well-structured project layout.

Pros

  • Fast development experience with Vite's hot module replacement (HMR)
  • Strong typing support with TypeScript integration
  • Cross-platform compatibility for Windows, macOS, and Linux
  • Automated builds and releases using GitHub Actions

Cons

  • Steeper learning curve for developers new to Electron or Vue 3
  • Limited customization options compared to building from scratch
  • Potential overhead for simple applications that don't require all features
  • Dependency on specific versions of tools and libraries

Getting Started

  1. Clone the repository:

    git clone https://github.com/cawa-93/vite-electron-builder.git my-app
    cd my-app
    
  2. Install dependencies:

    npm install
    
  3. Start the development server:

    npm run watch
    
  4. To build for production:

    npm run build
    

The application will now be running in development mode. You can edit the files in the packages directory to start customizing your application. The main application logic is in packages/renderer/src/App.vue for the frontend and packages/main/src/index.ts for the main Electron process.

Competitor Comparisons

🥳 Really simple Electron + Vite + Vue boilerplate.

Pros of electron-vite-vue

  • Simpler project structure with fewer configuration files
  • More active development and frequent updates
  • Better integration with Vue 3 and its ecosystem

Cons of electron-vite-vue

  • Less comprehensive build and packaging setup
  • Fewer pre-configured development tools and scripts
  • Limited TypeScript support out of the box

Code Comparison

electron-vite-vue:

import { app, BrowserWindow } from 'electron'
import path from 'path'

const createWindow = () => {
  const win = new BrowserWindow({
    webPreferences: {
      preload: path.join(__dirname, 'preload.js')
    }
  })
  win.loadFile('index.html')
}

vite-electron-builder:

import { app, BrowserWindow } from 'electron'
import { join } from 'path'
import { URL } from 'url'

async function createWindow() {
  const browserWindow = new BrowserWindow({
    webPreferences: {
      preload: join(__dirname, '../../preload/dist/index.cjs'),
    },
  })
  await browserWindow.loadURL(
    import.meta.env.DEV && import.meta.env.VITE_DEV_SERVER_URL !== undefined
      ? import.meta.env.VITE_DEV_SERVER_URL
      : new URL('../renderer/dist/index.html', 'file://' + __dirname).toString()
  )
}

The code comparison shows that vite-electron-builder has a more complex setup with TypeScript support and additional configuration options, while electron-vite-vue offers a simpler, more straightforward approach to creating an Electron window.

Clone to try a simple Electron app

Pros of electron-quick-start

  • Simple and straightforward setup for beginners
  • Minimal boilerplate code, making it easier to understand the basics
  • Official Electron example, ensuring compatibility and best practices

Cons of electron-quick-start

  • Lacks modern build tools and optimizations
  • No built-in support for TypeScript or other advanced features
  • Limited scaffolding for larger, more complex applications

Code Comparison

electron-quick-start:

const { app, BrowserWindow } = require('electron')

function createWindow () {
  const win = new BrowserWindow({ width: 800, height: 600 })
  win.loadFile('index.html')
}

app.whenReady().then(createWindow)

vite-electron-builder:

import { app, BrowserWindow } from 'electron'
import { join } from 'path'
import { URL } from 'url'

async function createWindow() {
  const browserWindow = new BrowserWindow({
    show: false,
    webPreferences: {
      preload: join(__dirname, '../../preload/dist/index.cjs'),
    },
  })

  await browserWindow.loadURL(
    import.meta.env.DEV && import.meta.env.VITE_DEV_SERVER_URL !== undefined
      ? import.meta.env.VITE_DEV_SERVER_URL
      : new URL('../renderer/dist/index.html', 'file://' + __dirname).toString()
  )

  browserWindow.show()
}

app.whenReady().then(createWindow)

The vite-electron-builder example showcases more advanced features, including TypeScript support, environment-based loading, and a more structured approach to window creation.

A Foundation for Scalable Cross-Platform Apps

Pros of electron-react-boilerplate

  • More established project with a larger community and longer history
  • Includes TypeScript support out of the box
  • Offers a more comprehensive set of development tools and scripts

Cons of electron-react-boilerplate

  • Uses webpack for bundling, which can be slower compared to Vite
  • Has a more complex project structure, potentially steeper learning curve
  • Less frequent updates and releases compared to vite-electron-builder

Code Comparison

electron-react-boilerplate:

import { app, BrowserWindow, shell, ipcMain } from 'electron';
import { autoUpdater } from 'electron-updater';
import log from 'electron-log';
import MenuBuilder from './menu';
import { resolveHtmlPath } from './util';

vite-electron-builder:

import { app, BrowserWindow } from 'electron'
import { join } from 'path'
import { URL } from 'url'

const isSingleInstance = app.requestSingleInstanceLock()
const isDevelopment = import.meta.env.MODE === 'development'

Both projects provide a solid foundation for building Electron applications with React. electron-react-boilerplate offers a more comprehensive setup with additional tools and TypeScript support, making it suitable for larger projects. However, it may have a steeper learning curve due to its complexity.

vite-electron-builder, on the other hand, leverages Vite for faster development and simpler configuration. It's more lightweight and may be easier for beginners or smaller projects. The choice between the two depends on specific project requirements and developer preferences.

Easily Build Your Vue.js App For Desktop With Electron

Pros of vue-cli-plugin-electron-builder

  • Integrates seamlessly with Vue CLI, providing a familiar development experience for Vue developers
  • Offers a more mature and stable ecosystem, with longer development history and wider community adoption
  • Provides extensive documentation and examples, making it easier for beginners to get started

Cons of vue-cli-plugin-electron-builder

  • Relies on Vue CLI, which may be considered outdated compared to more modern build tools like Vite
  • Generally slower build times compared to Vite-based solutions, especially for larger projects
  • Less flexibility in customizing the build process outside of Vue CLI's constraints

Code Comparison

vue-cli-plugin-electron-builder:

module.exports = {
  pluginOptions: {
    electronBuilder: {
      builderOptions: {
        // Configure electron-builder options here
      }
    }
  }
}

vite-electron-builder:

import { defineConfig } from 'vite'
import electron from 'vite-plugin-electron'

export default defineConfig({
  plugins: [
    electron({
      // Configure Electron options here
    })
  ]
})

The code comparison shows the different configuration approaches. vue-cli-plugin-electron-builder uses Vue CLI's configuration file, while vite-electron-builder leverages Vite's plugin system for a more modular setup.

Ultra-fast bootstrapping with Angular and Electron :speedboat:

Pros of angular-electron

  • Built with Angular, providing a robust framework for large-scale applications
  • Includes Angular CLI for easier development and project management
  • Offers a more opinionated structure, which can be beneficial for team projects

Cons of angular-electron

  • Potentially heavier and slower build process compared to Vite-based solutions
  • May have a steeper learning curve for developers not familiar with Angular
  • Less flexibility in terms of choosing frontend frameworks or libraries

Code Comparison

vite-electron-builder:

import { app, BrowserWindow } from 'electron'
import { join } from 'path'
import { URL } from 'url'

const createWindow = () => {
  const browserWindow = new BrowserWindow({
    show: false,
    webPreferences: {
      preload: join(__dirname, '../../preload/dist/index.cjs'),
    },
  })
  // ... (window setup continues)
}

angular-electron:

import { app, BrowserWindow, screen } from 'electron';
import * as path from 'path';
import * as fs from 'fs';

let win: BrowserWindow = null;
const args = process.argv.slice(1),
  serve = args.some(val => val === '--serve');

function createWindow(): BrowserWindow {
  const size = screen.getPrimaryDisplay().workAreaSize;
  // ... (window setup continues)
}

Both repositories provide boilerplate code for creating Electron applications, but with different frontend frameworks and build tools. The choice between them depends on project requirements and team preferences.

6,407

:electron: A complete tool for building and publishing Electron applications

Pros of Electron Forge

  • More mature and widely adopted project with extensive documentation
  • Offers a broader range of templates and customization options
  • Provides built-in support for various packaging and distribution formats

Cons of Electron Forge

  • Steeper learning curve for beginners
  • Requires more configuration and boilerplate code
  • May have slower build times for complex projects

Code Comparison

Electron Forge (main process):

const { app, BrowserWindow } = require('electron');

function createWindow() {
  const win = new BrowserWindow({ width: 800, height: 600 });
  win.loadFile('index.html');
}

app.whenReady().then(createWindow);

vite-electron-builder (main process):

import { app, BrowserWindow } from 'electron';
import { join } from 'path';

async function createWindow() {
  const win = new BrowserWindow({ width: 800, height: 600 });
  await win.loadFile(join(__dirname, '../renderer/index.html'));
}

app.whenReady().then(createWindow);

Both repositories provide solid foundations for Electron app development, but vite-electron-builder offers a more streamlined setup with Vite integration, while Electron Forge provides a more comprehensive toolkit with greater flexibility.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

[!Important] This project is mainrained by developer from Ukraine 🇺🇦

Due to the ongoing war resulting from Russia's full-scale invasion of Ukraine, I currently lack the time for the full development of this open-source project. My primary focus is on ensuring the well-being of myself and my family. I'll prioritize and review all new contributions as soon as possible.

If you can, please consider supporting Ukraine or me personally.

Thank you for your understanding and support.


Vite Electron Builder Boilerplate

This is a template for secure electron applications. Written following the latest safety requirements, recommendations and best practices.

Under the hood is Vite — A next-generation blazing fast bundler, and electron-builder for packaging.

Get started

Follow these steps to get started with the template:

  1. Click the Use this template button (you must be logged in) or just clone this repo.
  2. If you want to use another package manager you may need to edit .github/workflows since npm is used as default. (See also https://github.com/cawa-93/vite-electron-builder/issues/944)

    Note: This template configured to install peerDependencies automatically.

That's all you need. 😉

❤️ If you like this template, don't forget to give a ⭐ or send support!

Features

Electron Electron version

  • This template uses the latest electron version with all the latest security patches.
  • The architecture of the application is built according to the security guides and best practices.
  • The latest version of the electron-builder is used to package the application.

Vite Vite version

  • Vite is used to bundle all source codes. It's an extremely fast bundler, that has a vast array of amazing features. You can learn more about how it is arranged in this video.
  • Vite supports reading .env files. You can also specify the types of your environment variables in types/env.d.ts.
  • Automatic hot-reloads for the Main and Renderer processes.

Vite provides many useful features, such as: TypeScript, TSX/JSX, CSS/JSON Importing, CSS Modules , Web Assembly and much more.

See all Vite features.

TypeScript TypeScript version (optional)

  • The latest version of TypeScript is used for all the source code.
  • Vite supports TypeScript out of the box. However, it does not support type checking.
  • Code formatting rules follow the latest TypeScript recommendations and best practices thanks to @typescript-eslint/eslint-plugin.

Guide to disable typescript and remove dependencies

Vue Vue version (optional)

  • By default, web pages are built using Vue. However, you can easily change that. Or not use additional frameworks at all.
  • Code formatting rules follow the latest Vue recommendations and best practices thanks to eslint-plugin-vue.

Find more forks 🔱 for others frameworks or setups

Continuous Integration

  • The configured workflow will check the types for each push and PR.
  • The configured workflow will check the code style for each push and PR.
  • Automatic tests used Vitest Vitest version -- A blazing fast test framework powered by Vite.
    • Unit tests are placed within each package and are ran separately.
    • End-to-end tests are placed in the root tests directory and use playwright.

Workflow graph

Publishing

  • Each time you push changes to the main branch, the release workflow starts, which creates a new draft release. For each next commit will be created and replaced artifacts. That way you will always have draft with latest artifacts, and the release can be published once it is ready.
    • Code signing supported. See release workflow.
    • Auto-update is supported. After the release is published, all client applications will download the new version and install updates silently.

Note: This template configured only for GitHub public repository, but electron-builder also supports other update distribution servers. Find more in electron-builder docs.

How it works

The template requires a minimum amount dependencies. Only Vite is used for building, nothing more.

Project Structure

The structure of this template is very similar to a monorepo. The entire source code of the project is divided into three modules (packages) that are each bundled independently:

  • packages/renderer. Responsible for the contents of the application window. In fact, it is a regular web application. In developer mode, you can even open it in a browser. The development and build process is the same as for classic web applications. Access to low-level API electrons or Node.js is done through the preload layer.
  • packages/preload. Contain Electron preload scripts. Acts as an intermediate bridge between the renderer process and the API exposed by electron and Node.js. Runs in an isolated browser context, but has direct access to the full Node.js functionality.
  • packages/main Contain Electron main script. This is the main process that powers the application. It manages creating and handling the spawned BrowserWindow, setting and enforcing secure permissions and request handlers. You can also configure it to do much more as per your need, such as: logging, reporting statistics and health status among others.

Schematically, the structure of the application and the method of communication between packages can be depicted as follows:

flowchart TB;

packages/preload <-. IPC Messages .-> packages/main

    subgraph packages/main["packages/main (Shared beatween all windows)"]
    M[index.ts] --> EM[Electron Main Process Modules]
    M --> N2[Node.js API]
    end

subgraph Window["Browser Window"]
    subgraph packages/preload["packages/preload (Works in isolated context)"]
    P[index.ts] --> N[Node.js API]
    P --> ED[External dependencies]
    P --> ER[Electron Renderer Process Modules]
    end


    subgraph packages/renderer
    R[index.html] --> W[Web API]
    R --> BD[Bundled dependencies]
    R --> F[Web Frameworks]
    end
    end

packages/renderer -- Call Exposed API --> P

Build web resources

The main and preload packages are built in library mode as it is simple javascript. The renderer package builds as a regular web app.

Compile App

The next step is to package a ready to distribute Electron app for macOS, Windows and Linux with "auto update" support out of the box.

To do this, use electron-builder:

  • Using the npm script compile: This script is configured to compile the application as quickly as possible. It is not ready for distribution, it is compiled only for the current platform and is used for debugging.
  • Using GitHub Actions: The application is compiled for any platform and ready-to-distribute files are automatically added as a draft to the GitHub releases page.

Working with dependencies

Because the renderer works and builds like a regular web application, you can only use dependencies that support the browser or compile to a browser-friendly format.

This means that in the renderer you are free to use any frontend dependencies such as Vue, React, lodash, axios and so on. However, you CANNOT use any native Node.js APIs, such as, systeminformation. These APIs are only available in a Node.js runtime environment and will cause your application to crash if used in the renderer layer. Instead, if you need access to Node.js runtime APIs in your frontend, export a function form the preload package.

All dependencies that require Node.js api can be used in the preload script.

Expose in main world

Here is an example. Let's say you need to read some data from the file system or database in the renderer.

In the preload context, create a function that reads and returns data. To make the function announced in the preload available in the render, you usually need to call the electron.contextBridge.exposeInMainWorld. However, this template uses the unplugin-auto-expose plugin, so you just need to export the method from the preload. The exposeInMainWorld will be called automatically.

// preload/index.ts
import { readFile } from 'node:fs/promises';

// Encapsulate types if you use typescript
interface UserData {
  prop: string
}

// Encapsulate all node.js api
// Everything you exported from preload/index.ts may be called in renderer
export function getUserData(): Promise<UserData> {
  return readFile('/path/to/file/in/user/filesystem.json', {encoding:'utf8'}).then(JSON.parse);
}

Now you can import and call the method in renderer

// renderer/anywere/component.ts
import { getUserData } from '#preload'
const userData = await getUserData()

Find more in Context Isolation tutorial.

Working with Electron API

Although the preload has access to all of Node.js's API, it still runs in the BrowserWindow context, so a limited electron modules are available in it. Check the electron docs for full list of available methods.

All other electron methods can be invoked in the main.

As a result, the architecture of interaction between all modules is as follows:

sequenceDiagram
renderer->>+preload: Read data from file system
preload->>-renderer: Data
renderer->>preload: Maximize window
activate preload
preload-->>main: Invoke IPC command
activate main
main-->>preload: IPC response
deactivate main
preload->>renderer: Window maximized
deactivate preload

Find more in Inter-Process Communication tutorial.

Modes and Environment Variables

All environment variables are set as part of the import.meta, so you can access them vie the following way: import.meta.env.

Note: If you are using TypeScript and want to get code completion you must add all the environment variables to the ImportMetaEnv in types/env.d.ts.

The mode option is used to specify the value of import.meta.env.MODE and the corresponding environment variables files that need to be loaded.

By default, there are two modes:

  • production is used by default
  • development is used by npm run watch script

When running the build script, the environment variables are loaded from the following files in your project root:

.env                # loaded in all cases
.env.local          # loaded in all cases, ignored by git
.env.[mode]         # only loaded in specified env mode
.env.[mode].local   # only loaded in specified env mode, ignored by git

Warning: To prevent accidentally leaking env variables to the client, only variables prefixed with VITE_ are exposed to your Vite-processed code.

For example let's take the following .env file:

DB_PASSWORD=foobar
VITE_SOME_KEY=123

Only VITE_SOME_KEY will be exposed as import.meta.env.VITE_SOME_KEY to your client source code, but DB_PASSWORD will not.

You can change that prefix or add another. See envPrefix

Contribution

See Contributing Guide.