Convert Figma logo to code with AI

huggingface logopytorch-image-models

The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more

31,402
4,694
31,402
70

Top Related Projects

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.

76,949

Models and examples built with TensorFlow

15,955

Datasets, Transforms and Models specific to Computer Vision

61,580

Deep Learning for humans

The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more

Best Practices, code samples, and documentation for Computer Vision.

Quick Overview

PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders, augmentations, and training/validation scripts for PyTorch. It aims to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

Pros

  • Extensive collection of pre-trained models and implementations
  • Consistent interface for different models, making it easy to switch between them
  • Regular updates with new models and improvements
  • Includes training scripts and utilities for fine-tuning and evaluation

Cons

  • Large repository size due to the extensive collection of models
  • Can be overwhelming for beginners due to the wide range of options
  • Some models may have dependencies on specific PyTorch versions
  • Documentation could be more comprehensive for some advanced features

Code Examples

  1. Loading a pre-trained model:
import timm

model = timm.create_model('resnet50', pretrained=True)
model.eval()
  1. Performing inference on an image:
from PIL import Image
import torch
import timm.data

img = Image.open('path/to/image.jpg')
transform = timm.data.create_transform(
    input_size=224,
    is_training=False
)
img_tensor = transform(img).unsqueeze(0)

with torch.no_grad():
    output = model(img_tensor)
    probabilities = torch.nn.functional.softmax(output[0], dim=0)
    print(probabilities.topk(5))
  1. Fine-tuning a model on a custom dataset:
import timm

model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=10)
model.train()

# Assuming you have your custom dataset and dataloader
for epoch in range(num_epochs):
    for batch in dataloader:
        images, labels = batch
        outputs = model(images)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

Getting Started

To get started with PyTorch Image Models:

  1. Install the library:
pip install timm
  1. Import and use in your Python script:
import timm

# List available models
print(timm.list_models())

# Create a model
model = timm.create_model('resnet50', pretrained=True)

# Use the model for inference or training
# ...

Competitor Comparisons

Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.

Pros of Detectron2

  • Comprehensive suite of object detection and segmentation models
  • Extensive documentation and tutorials for various use cases
  • Built-in support for distributed training and deployment

Cons of Detectron2

  • Steeper learning curve for beginners
  • More focused on detection and segmentation tasks, less versatile for general image classification
  • Heavier framework with more dependencies

Code Comparison

Detectron2:

from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg

cfg = get_cfg()
cfg.merge_from_file("path/to/config.yaml")
predictor = DefaultPredictor(cfg)
outputs = predictor(image)

pytorch-image-models:

import timm

model = timm.create_model('resnet50', pretrained=True)
model.eval()
output = model(image)

pytorch-image-models offers a more straightforward API for quickly loading and using pre-trained models, while Detectron2 provides a more comprehensive configuration system for fine-tuning complex detection and segmentation models.

76,949

Models and examples built with TensorFlow

Pros of tensorflow/models

  • Broader scope, covering various ML domains beyond just image models
  • Official TensorFlow implementation, ensuring compatibility and optimization
  • Extensive documentation and tutorials for each model

Cons of tensorflow/models

  • Less focused on image models specifically, potentially lacking some specialized architectures
  • May have a steeper learning curve due to its broader scope
  • Updates might be less frequent for individual model categories

Code Comparison

tensorflow/models:

import tensorflow as tf
from official.vision.image_classification import resnet_model

model = resnet_model.resnet50(num_classes=1000)

pytorch-image-models:

import timm

model = timm.create_model('resnet50', pretrained=True, num_classes=1000)

Summary

tensorflow/models is a comprehensive repository for various machine learning tasks, while pytorch-image-models focuses specifically on image models. The TensorFlow repository offers a wider range of models and official implementations, but may be more complex to navigate. pytorch-image-models provides a more streamlined experience for image-related tasks, with a simpler API and frequent updates. The choice between the two depends on the specific project requirements and the preferred deep learning framework.

15,955

Datasets, Transforms and Models specific to Computer Vision

Pros of vision

  • Official PyTorch repository, ensuring long-term support and compatibility
  • Comprehensive set of computer vision tools beyond just models
  • Tightly integrated with other PyTorch libraries and ecosystem

Cons of vision

  • Fewer pre-trained models compared to pytorch-image-models
  • Less frequent updates and new model implementations
  • May have a steeper learning curve for beginners

Code Comparison

vision:

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)

pytorch-image-models:

import timm
model = timm.create_model('resnet18', pretrained=True)

Both repositories provide easy access to pre-trained models, but pytorch-image-models (timm) offers a wider variety of models and more flexibility in model creation. vision focuses on providing a comprehensive set of tools for computer vision tasks, including datasets, transforms, and utilities, while pytorch-image-models specializes in offering a large collection of image models with consistent API.

vision is ideal for users deeply integrated into the PyTorch ecosystem, while pytorch-image-models is excellent for those seeking a wide range of cutting-edge models with minimal setup. The choice between them depends on specific project requirements and personal preferences.

61,580

Deep Learning for humans

Pros of Keras

  • Higher-level API, making it easier for beginners to get started
  • Supports multiple backend engines (TensorFlow, Theano, CNTK)
  • Extensive documentation and community support

Cons of Keras

  • Less flexibility for advanced users compared to PyTorch
  • Slower development cycle for cutting-edge features
  • Limited support for dynamic computational graphs

Code Comparison

Keras:

from keras.models import Sequential
from keras.layers import Dense

model = Sequential([
    Dense(64, activation='relu', input_shape=(784,)),
    Dense(10, activation='softmax')
])

pytorch-image-models:

import timm

model = timm.create_model('resnet18', pretrained=True, num_classes=10)

The Keras example shows its simplicity in creating a basic neural network, while the pytorch-image-models snippet demonstrates the ease of using pre-trained models with a single line of code.

pytorch-image-models focuses specifically on computer vision tasks and provides a wide range of state-of-the-art image models. It offers more flexibility and customization options for researchers and advanced practitioners. Keras, on the other hand, is a more general-purpose deep learning library that supports various types of neural networks and is known for its user-friendly interface.

The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more

Pros of pytorch-image-models

  • Extensive collection of pre-trained image models
  • Regular updates and active maintenance
  • Comprehensive documentation and examples

Cons of pytorch-image-models

  • Larger repository size due to extensive model collection
  • May have a steeper learning curve for beginners
  • Potentially higher computational requirements

Code Comparison

pytorch-image-models:

import timm
model = timm.create_model('resnet50', pretrained=True)
output = model(input_tensor)

pytorch-image-models:

import timm
model = timm.create_model('resnet50', pretrained=True)
output = model(input_tensor)

As both repositories are the same, there is no difference in the code comparison. The usage and implementation would be identical for both.

Summary

Since the comparison is between the same repository (huggingface/pytorch-image-models), there are no actual differences to highlight. The repository, known as pytorch-image-models or timm, is a popular collection of image models and utilities for PyTorch. It offers a wide range of pre-trained models, is actively maintained, and provides excellent documentation. However, its extensive collection may result in a larger repository size and potentially higher computational requirements compared to more focused libraries.

Best Practices, code samples, and documentation for Computer Vision.

Pros of computervision-recipes

  • Comprehensive collection of computer vision recipes and notebooks
  • Covers a wide range of CV tasks, including object detection, image classification, and segmentation
  • Provides end-to-end examples and best practices for Azure integration

Cons of computervision-recipes

  • Less focused on state-of-the-art model implementations
  • May have a steeper learning curve for those not familiar with Azure ecosystem
  • Fewer pre-trained models available compared to pytorch-image-models

Code Comparison

pytorch-image-models:

import timm
model = timm.create_model('resnet50', pretrained=True)
output = model(input_tensor)

computervision-recipes:

from azureml.core import Workspace
from azureml.core.model import Model

model = Model(ws, 'my_model')
model.download(target_dir=os.getcwd(), exist_ok=True)

pytorch-image-models focuses on providing a wide range of pre-trained models with a simple API, while computervision-recipes emphasizes Azure integration and end-to-end workflows for various computer vision tasks. The choice between the two depends on specific project requirements and the desired level of Azure integration.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

PyTorch Image Models

What's New

Aug 21, 2024

  • Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models
modeltop1top5param_countimg_size
vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k87.43898.25664.11384
vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k86.60897.93464.11256
vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k86.59498.0260.4384
vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k85.73497.6160.4256
  • MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe
modeltop1top5param_countimg_size
resnet50d.ra4_e3600_r224_in1k81.83895.92225.58288
efficientnet_b1.ra4_e3600_r240_in1k81.44095.7007.79288
resnet50d.ra4_e3600_r224_in1k80.95295.38425.58224
efficientnet_b1.ra4_e3600_r240_in1k80.40695.1527.79240
mobilenetv1_125.ra4_e3600_r224_in1k77.60093.8046.27256
mobilenetv1_125.ra4_e3600_r224_in1k76.92493.2346.27224
  • Add SAM2 (HieraDet) backbone arch & weight loading support
  • Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k
modeltop1top5param_count
hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k84.91297.26035.01
hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k84.56097.10635.01

Aug 8, 2024

July 28, 2024

  • Add mobilenet_edgetpu_v2_m weights w/ ra4 mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
  • Release 1.0.8

July 26, 2024

  • More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k84.9915.0197.2942.70632.59544
mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k84.77215.22897.3442.65632.59480
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k84.6415.3697.1142.88632.59448
mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k84.31415.68697.1022.89832.59384
mobilenetv4_conv_aa_large.e600_r384_in1k83.82416.17696.7343.26632.59480
mobilenetv4_conv_aa_large.e600_r384_in1k83.24416.75696.3923.60832.59384
mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k82.9917.0196.673.3311.07320
mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k82.36417.63696.2563.74411.07256
modeltop1top1_errtop5top5_errparam_countimg_size
efficientnet_b0.ra4_e3600_r224_in1k79.36420.63694.7545.2465.29256
efficientnet_b0.ra4_e3600_r224_in1k78.58421.41694.3385.6625.29224
mobilenetv1_100h.ra4_e3600_r224_in1k76.59623.40493.2726.7285.28256
mobilenetv1_100.ra4_e3600_r224_in1k76.09423.90693.0046.9964.23256
mobilenetv1_100h.ra4_e3600_r224_in1k75.66224.33892.5047.4965.28224
mobilenetv1_100.ra4_e3600_r224_in1k75.38224.61892.3127.6884.23224
  • Prototype of set_input_size() added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
  • Improved support in swin for different size handling, in addition to set_input_size, always_partition and strict_img_size args have been added to __init__ to allow more flexible input size constraints
  • Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
  • Add several tiny < .5M param models for testing that are actually trained on ImageNet-1k
modeltop1top1_errtop5top5_errparam_countimg_sizecrop_pct
test_efficientnet.r160_in1k47.15652.84471.72628.2740.361921.0
test_byobnet.r160_in1k46.69853.30271.67428.3260.461921.0
test_efficientnet.r160_in1k46.42653.57470.92829.0720.361600.875
test_byobnet.r160_in1k45.37854.62270.57229.4280.461600.875
test_vit.r160_in1k42.058.068.66431.3360.371921.0
test_vit.r160_in1k40.82259.17867.21232.7880.371600.875
  • Fix vit reg token init, thanks Promisery
  • Other misc fixes

June 24, 2024

  • 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_hybrid_large.ix_e600_r384_in1k84.35615.64496.8923.10837.76448
mobilenetv4_hybrid_large.ix_e600_r384_in1k83.99016.01096.7023.29837.76384
mobilenetv4_hybrid_medium.ix_e550_r384_in1k83.39416.60696.7603.24011.07448
mobilenetv4_hybrid_medium.ix_e550_r384_in1k82.96817.03296.4743.52611.07384
mobilenetv4_hybrid_medium.ix_e550_r256_in1k82.49217.50896.2783.72211.07320
mobilenetv4_hybrid_medium.ix_e550_r256_in1k81.44618.55495.7044.29611.07256
  • florence2 weight loading in DaViT model

June 12, 2024

  • MobileNetV4 models and initial set of timm trained weights added:
modeltop1top1_errtop5top5_errparam_countimg_size
mobilenetv4_hybrid_large.e600_r384_in1k84.26615.73496.9363.06437.76448
mobilenetv4_hybrid_large.e600_r384_in1k83.80016.20096.7703.23037.76384
mobilenetv4_conv_large.e600_r384_in1k83.39216.60896.6223.37832.59448
mobilenetv4_conv_large.e600_r384_in1k82.95217.04896.2663.73432.59384
mobilenetv4_conv_large.e500_r256_in1k82.67417.32696.313.6932.59320
mobilenetv4_conv_large.e500_r256_in1k81.86218.13895.694.3132.59256
mobilenetv4_hybrid_medium.e500_r224_in1k81.27618.72495.7424.25811.07256
mobilenetv4_conv_medium.e500_r256_in1k80.85819.14295.7684.2329.72320
mobilenetv4_hybrid_medium.e500_r224_in1k80.44219.55895.384.6211.07224
mobilenetv4_conv_blur_medium.e500_r224_in1k80.14219.85895.2984.7029.72256
mobilenetv4_conv_medium.e500_r256_in1k79.92820.07295.1844.8169.72256
mobilenetv4_conv_medium.e500_r224_in1k79.80820.19295.1864.8149.72256
mobilenetv4_conv_blur_medium.e500_r224_in1k79.43820.56294.9325.0689.72224
mobilenetv4_conv_medium.e500_r224_in1k79.09420.90694.775.239.72224
mobilenetv4_conv_small.e2400_r224_in1k74.61625.38492.0727.9283.77256
mobilenetv4_conv_small.e1200_r224_in1k74.29225.70892.1167.8843.77256
mobilenetv4_conv_small.e2400_r224_in1k73.75626.24491.4228.5783.77224
mobilenetv4_conv_small.e1200_r224_in1k73.45426.54691.348.663.77224
  • Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
  • ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
  • OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.

May 14, 2024

  • Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
  • Add Hiera models from Meta (https://github.com/facebookresearch/hiera).
  • Add normalize= flag for transorms, return non-normalized torch.Tensor with original dytpe (for chug)
  • Version 1.0.3 release

May 11, 2024

  • Searching for Better ViT Baselines (For the GPU Poor) weights and vit variants released. Exploring model shapes between Tiny and Base.
modeltop1top5param_countimg_size
vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k86.20297.87464.11256
vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k85.41897.4860.4256
vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k84.32296.81263.95256
vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k83.90696.68460.23256
vit_base_patch16_rope_reg1_gap_256.sbb_in1k83.86696.6786.43256
vit_medium_patch16_rope_reg1_gap_256.sbb_in1k83.8196.82438.74256
vit_betwixt_patch16_reg4_gap_256.sbb_in1k83.70696.61660.4256
vit_betwixt_patch16_reg1_gap_256.sbb_in1k83.62896.54460.4256
vit_medium_patch16_reg4_gap_256.sbb_in1k83.4796.62238.88256
vit_medium_patch16_reg1_gap_256.sbb_in1k83.46296.54838.88256
vit_little_patch16_reg4_gap_256.sbb_in1k82.51496.26222.52256
vit_wee_patch16_reg1_gap_256.sbb_in1k80.25695.36013.42256
vit_pwee_patch16_reg1_gap_256.sbb_in1k80.07295.13615.25256
vit_mediumd_patch16_reg4_gap_256.sbb_in12kN/AN/A64.11256
vit_betwixt_patch16_reg4_gap_256.sbb_in12kN/AN/A60.4256
  • AttentionExtract helper added to extract attention maps from timm models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949
  • forward_intermediates() API refined and added to more models including some ConvNets that have other extraction methods.
  • 1017 of 1047 model architectures support features_only=True feature extraction. Remaining 34 architectures can be supported but based on priority requests.
  • Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used.

April 11, 2024

  • Prepping for a long overdue 1.0 release, things have been stable for a while now.
  • Significant feature that's been missing for a while, features_only=True support for ViT models with flat hidden states or non-std module layouts (so far covering 'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*')
  • Above feature support achieved through a new forward_intermediates() API that can be used with a feature wrapping module or direclty.
model = timm.create_model('vit_base_patch16_224')
final_feat, intermediates = model.forward_intermediates(input) 
output = model.forward_head(final_feat)  # pooling + classifier head

print(final_feat.shape)
torch.Size([2, 197, 768])

for f in intermediates:
    print(f.shape)
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])

print(output.shape)
torch.Size([2, 1000])
model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,))
output = model(torch.randn(2, 3, 512, 512))

for o in output:    
    print(o.shape)   
torch.Size([2, 768, 32, 32])
torch.Size([2, 768, 32, 32])
  • TinyCLIP vision tower weights added, thx Thien Tran

Feb 19, 2024

  • Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT
  • HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by SeeFun
  • Removed setup.py, moved to pyproject.toml based build supported by PDM
  • Add updated model EMA impl using _for_each for less overhead
  • Support device args in train script for non GPU devices
  • Other misc fixes and small additions
  • Min supported Python version increased to 3.8
  • Release 0.9.16

Jan 8, 2024

Datasets & transform refactoring

  • HuggingFace streaming (iterable) dataset support (--dataset hfids:org/dataset)
  • Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset
  • Tested HF datasets and webdataset wrapper streaming from HF hub with recent timm ImageNet uploads to https://huggingface.co/timm
  • Make input & target column/field keys consistent across datasets and pass via args
  • Full monochrome support when using e:g: --input-size 1 224 224 or --in-chans 1, sets PIL image conversion appropriately in dataset
  • Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project
  • Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args
  • Allow train without validation set (--val-split '') in train script
  • Add --bce-sum (sum over class dim) and --bce-pos-weight (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding

Nov 23, 2023

  • Added EfficientViT-Large models, thanks SeeFun
  • Fix Python 3.7 compat, will be dropping support for it soon
  • Other misc fixes
  • Release 0.9.12

Nov 20, 2023

Nov 3, 2023

Oct 20, 2023

  • SigLIP image tower weights supported in vision_transformer.py.
    • Great potential for fine-tune and downstream feature use.
  • Experimental 'register' support in vit models as per Vision Transformers Need Registers
  • Updated RepViT with new weight release. Thanks wangao
  • Add patch resizing support (on pretrained weight load) to Swin models
  • 0.9.8 release pending

Sep 1, 2023

  • TinyViT added by SeeFun
  • Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10
  • 0.9.7 release

Introduction

PyTorch Image Models (timm) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.

The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.

Features

Models

All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated.

Optimizers

Included optimizers available via create_optimizer / create_optimizer_v2 factory methods:

Augmentations

Regularization

Other

Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:

Results

Model validation results can be found in the results tables

Getting Started (Documentation)

The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome.

Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide by Chris Hughes is an extensive blog post covering many aspects of timm in detail.

timmdocs is an alternate set of documentation for timm. A big thanks to Aman Arora for his efforts creating timmdocs.

paperswithcode is a good resource for browsing the models within timm.

Train, Validation, Inference Scripts

The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See documentation.

Awesome PyTorch Resources

One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.

Object Detection, Instance and Semantic Segmentation

Computer Vision / Image Augmentation

Knowledge Distillation

Metric Learning

Training / Frameworks

Licenses

Code

The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue.

Pretrained Weights

So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.

Pretrained on more than ImageNet

Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.

Citing

BibTeX

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}

Latest DOI

DOI