Convert Figma logo to code with AI

muan logoemojilib

Emoji keyword library.

1,660
295
1,660
5

Top Related Projects

Easy to parse data and spritesheets for emoji

16,805

Emoji for everyone. https://twemoji.twitter.com/

🏪 One component to pick them all

[Archived] The world's largest independent emoji font. Maintained at https://github.com/joypixels/emoji-toolkit.

Noto Emoji fonts

Quick Overview

Emojilib is a JSON-based emoji keyword library. It provides a comprehensive collection of emojis along with their associated keywords, making it easier for developers to integrate emoji search and suggestion functionality into their applications.

Pros

  • Extensive emoji collection with associated keywords
  • Regular updates to include new emojis
  • Simple JSON format for easy integration
  • Includes additional data like Unicode codes and categories

Cons

  • Limited to keyword-based searches
  • May require additional processing for advanced emoji features
  • Doesn't include emoji images, only text representations
  • Keyword associations may not be exhaustive for all use cases

Code Examples

  1. Importing and using emojilib in JavaScript:
import emojilib from 'emojilib'

// Get all emojis
console.log(emojilib.lib)

// Search for emojis by keyword
const happyEmojis = Object.keys(emojilib.lib).filter(emoji => 
  emojilib.lib[emoji].keywords.includes('happy')
)
console.log(happyEmojis)
  1. Using emojilib in a React component for emoji search:
import React, { useState } from 'react'
import emojilib from 'emojilib'

function EmojiSearch() {
  const [searchTerm, setSearchTerm] = useState('')
  const [results, setResults] = useState([])

  const handleSearch = (event) => {
    const term = event.target.value
    setSearchTerm(term)
    const matchingEmojis = Object.keys(emojilib.lib).filter(emoji => 
      emojilib.lib[emoji].keywords.some(keyword => keyword.includes(term))
    )
    setResults(matchingEmojis)
  }

  return (
    <div>
      <input type="text" value={searchTerm} onChange={handleSearch} />
      <ul>
        {results.map(emoji => <li key={emoji}>{emoji}</li>)}
      </ul>
    </div>
  )
}
  1. Getting emoji categories using emojilib:
import emojilib from 'emojilib'

const categories = new Set()
Object.values(emojilib.lib).forEach(emoji => {
  if (emoji.category) {
    categories.add(emoji.category)
  }
})

console.log(Array.from(categories))

Getting Started

To use emojilib in your project, follow these steps:

  1. Install emojilib using npm:

    npm install emojilib
    
  2. Import emojilib in your JavaScript file:

    import emojilib from 'emojilib'
    
  3. Start using the library:

    // Access all emojis
    const allEmojis = emojilib.lib
    
    // Get keywords for a specific emoji
    const heartKeywords = emojilib.lib['❤️'].keywords
    
    // Search for emojis by keyword
    const foodEmojis = Object.keys(emojilib.lib).filter(emoji => 
      emojilib.lib[emoji].keywords.includes('food')
    )
    

Competitor Comparisons

Easy to parse data and spritesheets for emoji

Pros of emoji-data

  • More comprehensive dataset with additional metadata (e.g., category, subcategory)
  • Includes image assets in multiple formats (PNG, SVG)
  • Regular updates to align with the latest Unicode standards

Cons of emoji-data

  • Larger file size due to inclusion of image assets
  • More complex data structure, potentially requiring more processing for simple use cases

Code Comparison

emojilib:

{
  "grinning": {
    "keywords": ["face", "smile", "happy", "joy", ":D", "grin"],
    "char": "😀",
    "fitzpatrick_scale": false,
    "category": "people"
  }
}

emoji-data:

{
  "name": "GRINNING FACE",
  "unified": "1F600",
  "non_qualified": null,
  "docomo": null,
  "au": "E471",
  "softbank": "E057",
  "google": "FE332",
  "image": "1f600.png",
  "sheet_x": 30,
  "sheet_y": 24,
  "short_name": "grinning",
  "short_names": ["grinning"],
  "text": null,
  "texts": null,
  "category": "Smileys & Emotion",
  "subcategory": "face-smiling",
  "sort_order": 1,
  "added_in": "6.1",
  "has_img_apple": true,
  "has_img_google": true,
  "has_img_twitter": true,
  "has_img_facebook": true
}

The emoji-data repository provides more detailed information about each emoji, including Unicode codepoints, vendor-specific codes, and image availability across platforms. emojilib offers a simpler structure focused on keywords and basic categorization, making it easier to use for simple text-based emoji lookups.

16,805

Emoji for everyone. https://twemoji.twitter.com/

Pros of Twemoji

  • Comprehensive set of emoji designs with consistent style
  • Includes SVG and PNG formats for versatile usage
  • Actively maintained by Twitter with regular updates

Cons of Twemoji

  • Larger file size due to inclusion of image assets
  • More complex implementation for web projects
  • Potential licensing considerations for commercial use

Code Comparison

Emojilib usage:

const emoji = require("emojilib")
console.log(emoji.lib.smile)

Twemoji usage:

const twemoji = require("twemoji")
console.log(twemoji.parse("😀"))

Key Differences

  • Emojilib is a lightweight JSON-based library, while Twemoji provides actual emoji designs
  • Emojilib focuses on emoji metadata and keywords, whereas Twemoji emphasizes visual representation
  • Emojilib is more suitable for text-based emoji handling, while Twemoji is ideal for displaying custom emoji designs

Use Cases

Emojilib

  • Emoji search functionality
  • Keyword-based emoji suggestions
  • Text-to-emoji conversion

Twemoji

  • Consistent emoji display across platforms
  • Custom emoji implementations in web applications
  • Creating emoji-based graphics or illustrations

Both libraries serve different purposes in the emoji ecosystem, with Emojilib excelling in metadata and search, and Twemoji providing a comprehensive set of emoji designs for visual representation.

🏪 One component to pick them all

Pros of emoji-mart

  • Provides a complete emoji picker component with search functionality
  • Offers customization options for appearance and behavior
  • Supports multiple frameworks (React, Vue, and vanilla JS)

Cons of emoji-mart

  • Larger package size due to additional features and UI components
  • More complex implementation for simple use cases
  • Requires additional styling and configuration

Code Comparison

emojilib usage:

const emojilib = require('emojilib')
console.log(emojilib.lib.smile)

emoji-mart usage (React):

import { Picker } from 'emoji-mart'

function EmojiPicker() {
  return <Picker onSelect={emoji => console.log(emoji)} />
}

Summary

emojilib is a lightweight library that provides a simple JSON object of emojis, making it ideal for basic emoji lookup and integration. It's easy to use and has a small footprint.

emoji-mart, on the other hand, offers a full-featured emoji picker component with search, customization, and cross-framework support. It's more suitable for applications requiring a complete emoji selection interface but comes with a larger package size and more complex implementation.

Choose emojilib for simple emoji data access and emoji-mart for a rich, interactive emoji picking experience.

[Archived] The world's largest independent emoji font. Maintained at https://github.com/joypixels/emoji-toolkit.

Pros of EmojiOne

  • Offers high-quality, vector-based emoji images
  • Provides a more comprehensive set of emoji, including newer Unicode standards
  • Includes additional features like emoji shortcodes and categories

Cons of EmojiOne

  • Larger file size due to the inclusion of image assets
  • More complex implementation, potentially requiring additional setup
  • Some features may require a commercial license for use

Code Comparison

EmojiOne:

import { emojione } from 'emojione';

const text = "Hello! 👋";
const converted = emojione.toImage(text);

Emojilib:

import emojilib from 'emojilib';

const emoji = emojilib.lib['wave'];
console.log(emoji.char); // Outputs: 👋

Summary

EmojiOne offers a more comprehensive emoji solution with high-quality images and additional features, but comes with increased complexity and potential licensing considerations. Emojilib provides a simpler, lightweight approach focused on emoji data and Unicode characters, making it easier to implement but with fewer visual assets and features. The choice between the two depends on the specific requirements of your project, such as visual quality, feature set, and implementation complexity.

Noto Emoji fonts

Pros of noto-emoji

  • Comprehensive set of emoji fonts and images
  • High-quality vector graphics for scalability
  • Supports a wide range of platforms and devices

Cons of noto-emoji

  • Larger repository size due to extensive font files
  • More complex setup and integration process
  • Primarily focused on visual representation rather than data

Code Comparison

emojilib (JSON data):

{
  "grinning": {
    "keywords": ["face", "smile", "happy", "joy"],
    "char": "😀",
    "category": "people"
  }
}

noto-emoji (SVG file):

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 128 128">
  <path d="M63.9,118.3c-30.4,0-55-24.6-55-55s24.6-55,55-55s55,24.6,55,55S94.3,118.3,63.9,118.3z" fill="#FCEA2B"/>
  <!-- Additional path elements for facial features -->
</svg>

emojilib is a lightweight JSON-based emoji library, ideal for quick integration and data-driven applications. It provides emoji keywords, Unicode characters, and categories.

noto-emoji, on the other hand, offers high-quality vector graphics for emoji, ensuring consistent rendering across various platforms and screen sizes. It's more suitable for projects requiring visual emoji representations.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

emojilib CI status npm JavaScript Standard Style

Make emoji searchable with this keyword library.

Install

npm install emojilib --save

Usage

> require("emojilib")
{
  '😀': [
    'grinning_face',
    'face',
    'smile',
    'happy',
    'joy',
    ':D',
    'grin'
  ],
  '😃': [
    'grinning_face_with_big_eyes',
    'face',
    'happy',
    'joy',
    'haha',
  ...
}

If you are looking for the unicode emoji dataset, including version, grouping, ordering, and skin tone support flag, check out unicode-emoji-json.

Migrating from 2.x

Previously:

> var emoji = require("emojilib")
> emoji.lib
{
  "grinning": {
    "keywords": ["face", "smile", "happy", "joy"],
    "char": "😀",
    "fitzpatrick_scale": false,
    "category": "people"
  },
  ...
}

Now, merge keywords with other metadata from unicode-emoji-json:

> var data = require('unicode-emoji-json')
> var keywordSet = require('emojilib')
> for (const emoji in data) {
data[emoji]['keywords'] = keywordSet[emoji]
}
> data['😀']
{
  name: 'grinning face',
  slug: 'grinning_face',
  group: 'Smileys & Emotion',
  emoji_version: '1.0',
  unicode_version: '1.0',
  skin_tone_support: false,
  keywords: [ 'grinning_face', 'face', 'smile', 'happy', 'joy', ':D', 'grin' ]
}

Previously:

> var emoji = require("emojilib")
> emoji.ordered
[ 'grinning', 'grimacing', 'grin', 'joy', 'smiley', 'smile', 'sweat_smile', ...]

Now this data can be found in unicode-emoji-json:

> var orderedEmoji = require('unicode-emoji-json/data-ordered-emoji')
['😀', '😃', '😄', '😁', '😆', '😅',...]

Previously:

> var emoji = require("emojilib")
> emoji.fitzpatrick_scale_modifiers
[ '🏻', '🏼', '🏽', '🏾', '🏿' ]

Now this data can be found in unicode-emoji-json:

> require('unicode-emoji-json/data-emoji-components')
{
  light_skin_tone: '🏻',
  medium_light_skin_tone: '🏼',
  medium_skin_tone: '🏽',
  medium_dark_skin_tone: '🏾',
  dark_skin_tone: '🏿',
  red_hair: '🦰',
  curly_hair: '🦱',
  white_hair: '🦳',
  bald: '🦲'
}

Previously:

> require("emojilib").lib['v'].fitzpatrick_scale
true

> require("emojilib").lib['turtle'].fitzpatrick_scale
false

Now this data can be found in unicode-emoji-json:

> require('unicode-emoji-json')['✌️'].skin_tone_support
true
> require('unicode-emoji-json')['🐢'].skin_tone_support
false

Development

See CONTRIBUTING.md.

NPM DownloadsLast 30 Days