Top Related Projects
Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE
Data on COVID-19 (coronavirus) cases, deaths, hospitalizations, tests • All countries • Updated daily by Our World in Data
COVID-19 App
Coronavirus tracker app for iOS & macOS with maps & charts
Tracking the impact of COVID-19 in India
Quick Overview
The pcm-dpc/COVID-19 repository is an official data source for COVID-19 statistics in Italy, maintained by the Italian Department of Civil Protection. It provides daily updates on COVID-19 cases, deaths, recoveries, and other related data at national, regional, and provincial levels.
Pros
- Official and reliable data source for Italy's COVID-19 statistics
- Regularly updated with daily information
- Provides data in multiple formats (CSV, JSON) for easy integration
- Includes both national and regional/provincial level data
Cons
- Data is primarily in Italian, which may be challenging for non-Italian speakers
- Historical data revisions may occur without clear documentation
- Limited contextual information or analysis provided alongside the raw data
- Occasional delays in updates due to data collection and verification processes
Code Examples
This repository is not a code library but a data source. Therefore, code examples are not applicable in this context.
Getting Started
As this is a data repository rather than a code library, there isn't a traditional "getting started" section. However, here are some basic instructions for accessing the data:
- Visit the repository: https://github.com/pcm-dpc/COVID-19
- Navigate to the
dati-*
folders for specific data sets (e.g.,dati-regioni
for regional data) - Choose the desired data format (CSV or JSON)
- Download the files or use the raw GitHub URL to access the data directly in your applications
For example, to access the latest national data in CSV format, you can use this URL:
https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale-latest.csv
Users can then import this data into their preferred data analysis tools or programming languages for further processing and visualization.
Competitor Comparisons
Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE
Pros of CSSE
- Global coverage: Provides data for countries worldwide
- Frequent updates: Daily updates for most regions
- Additional data: Includes recovered cases and testing data for some areas
Cons of CSSE
- Data inconsistencies: Some discrepancies in reporting across different regions
- Less granular: Typically provides data at country/state level, not always at city/province level
- Delayed reporting: Some countries may have a lag in reporting compared to official sources
Code Comparison
COVID-19 (CSSE):
import pandas as pd
url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'
df = pd.read_csv(url)
COVID-19 (PCM-DPC):
import pandas as pd
url = 'https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv'
df = pd.read_csv(url)
Both repositories provide CSV files that can be easily read using pandas. The main difference is in the structure and scope of the data provided.
Data on COVID-19 (coronavirus) cases, deaths, hospitalizations, tests • All countries • Updated daily by Our World in Data
Pros of covid-19-data
- Global coverage with data from multiple countries and regions
- Includes additional metrics like vaccinations and testing
- More frequent updates (often daily)
Cons of covid-19-data
- Less granular data for specific countries
- Potential inconsistencies due to varied data sources
- Larger dataset may be more challenging to process
Code comparison
COVID-19:
import pandas as pd
df = pd.read_csv('dati-regioni/dpc-covid19-ita-regioni-latest.csv')
total_cases = df['totale_casi'].sum()
print(f"Total cases in Italy: {total_cases}")
covid-19-data:
import pandas as pd
df = pd.read_csv('owid-covid-data.csv')
italy_data = df[df['location'] == 'Italy']
latest_cases = italy_data['total_cases'].iloc[-1]
print(f"Total cases in Italy: {latest_cases}")
The COVID-19 repository focuses on Italian data with a simpler structure, while covid-19-data requires filtering for specific countries but offers a more comprehensive global dataset.
COVID-19 App
Pros of app
- Provides a mobile application for COVID-19 information dissemination
- Offers a user-friendly interface for accessing WHO guidelines and updates
- Supports multiple languages for global accessibility
Cons of app
- Limited to mobile platforms, potentially excluding desktop users
- May require more frequent updates to maintain app functionality
- Potentially higher development and maintenance costs
Code comparison
app (React Native):
import React from 'react';
import { Text, View } from 'react-native';
const CovidInfo = () => (
<View>
<Text>COVID-19 Information</Text>
</View>
);
COVID-19 (Python):
import pandas as pd
df = pd.read_csv('dati-regioni/dpc-covid19-ita-regioni-latest.csv')
print(df.head())
Summary
The app repository focuses on providing a mobile application for COVID-19 information, while COVID-19 primarily deals with data collection and analysis. The app offers a more interactive user experience but may have limited platform availability. COVID-19 provides raw data that can be used for various analytical purposes but may require more technical expertise to utilize effectively. The code examples highlight the different technologies used: React Native for the mobile app and Python for data processing in COVID-19.
Coronavirus tracker app for iOS & macOS with maps & charts
Pros of CoronaTracker
- User-friendly mobile app interface for easy access to COVID-19 data
- Provides real-time global statistics and interactive maps
- Includes features like news updates and prevention tips
Cons of CoronaTracker
- Less frequently updated compared to COVID-19 repository
- Focuses on global data, with less detailed information for specific regions
- May have potential inaccuracies due to data aggregation from multiple sources
Code Comparison
COVID-19 repository (Python):
import pandas as pd
df = pd.read_csv('dati-regioni/dpc-covid19-ita-regioni-latest.csv')
total_cases = df['totale_casi'].sum()
print(f"Total cases in Italy: {total_cases}")
CoronaTracker (Swift):
import Foundation
struct GlobalStats: Codable {
let confirmed: Int
let recovered: Int
let deaths: Int
}
let stats = fetchGlobalStats()
print("Global confirmed cases: \(stats.confirmed)")
The COVID-19 repository focuses on raw data processing, while CoronaTracker emphasizes user interface and data presentation for mobile devices. COVID-19 provides more detailed regional data, particularly for Italy, while CoronaTracker offers a broader global perspective with additional features for public awareness.
Tracking the impact of COVID-19 in India
Pros of covid19india-react
- Interactive and user-friendly web interface for data visualization
- Provides real-time updates and comprehensive state-wise data
- Includes additional features like vaccination data and testing statistics
Cons of covid19india-react
- Focuses primarily on Indian COVID-19 data, limiting its global applicability
- Requires more complex setup and dependencies due to React framework
- May have higher resource requirements for hosting and maintenance
Code Comparison
COVID-19 (Python):
import pandas as pd
df = pd.read_csv('dati-regioni/dpc-covid19-ita-regioni-latest.csv')
print(df.head())
covid19india-react (JavaScript/React):
import React from 'react';
import { fetchData } from '../api';
useEffect(() => {
const fetchApiData = async () => {
const data = await fetchData();
setState(data);
};
fetchApiData();
}, []);
The COVID-19 repository uses Python for data processing, while covid19india-react employs JavaScript and React for building an interactive web application. COVID-19 focuses on raw data handling, whereas covid19india-react emphasizes frontend development and data visualization.
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual CopilotREADME
Dati COVID-19 Italia
Sito del Dipartimento della Protezione Civile - Emergenza Coronavirus: la risposta nazionale
Il 31 gennaio 2020, il Consiglio dei Ministri dichiara lo stato di emergenza, per la durata di sei mesi, in conseguenza del rischio sanitario connesso all'infezione da Coronavirus.
Al Capo del Dipartimento della Protezione Civile, Angelo Borrelli, è affidato il coordinamento degli interventi necessari a fronteggiare l'emergenza sul territorio nazionale.
Le principali azioni coordinate dal Capo del Dipartimento sono volte al soccorso e all'assistenza della popolazione eventualmente interessata dal contagio, al potenziamento dei controlli nelle aree aeroportuali e portuali, in continuità con le misure urgenti già adottate dal Ministero della salute, al rientro in Italia dei cittadini che si trovano nei Paesi a rischio e al rimpatrio dei cittadini stranieri nei Paesi di origine esposti al rischio.
Per informare i cittadini e mettere a disposizione i dati raccolti, utili ai soli fini comunicativi e di informazione, il Dipartimento della Protezione Civile ha elaborato un cruscotto geografico interattivo raggiungibile agli indirizzi http://arcg.is/C1unv (versione desktop) e http://arcg.is/081a51 (versione mobile) e mette a disposizione, con licenza CC-BY-4.0, le seguenti informazioni aggiornate quotidianamente alle 18:30 (successivamente la conferenza stampa del Capo Dipartimento):
- Dati Andamento nazionale
- Dati json
- Dati regioni
- Dati province
- Schede riepilogative
- Aree
- Note
- Dati contratti DPC forniture
- Metriche
Avvisi
Avvisi sui dati andamento COVID-19 Italia
Struttura del repository
COVID-19/
â
âââ aree/
â âââ geojson
â â âââ dpc-covid-19-ita-aree-comuni.geojson
â â âââ dpc-covid19-ita-aree.geojson
â âââ shp
â â âââ dpc-covid19-ita-aree-comuni.dbf
â â âââ dpc-covid19-ita-aree-comuni.prj
â â âââ dpc-covid19-ita-aree-comuni.shp
â â âââ dpc-covid19-ita-aree-comuni.shx
â â âââ dpc-covid19-ita-aree.dbf
â â âââ dpc-covid19-ita-aree.prj
â â âââ dpc-covid19-ita-aree.shp
â â âââ dpc-covid19-ita-aree.shx
âââ dati-andamento-nazionale/
â âââ dpc-covid19-ita-andamento-nazionale-*.csv
â âââ dpc-covid19-ita-andamento-nazionale-latest.csv
â âââ dpc-covid19-ita-andamento-nazionale.csv
âââ dati-contratti-dpc-forniture/
â âââ dpc-covid19-dati-contratti-dpc-forniture.csv
â âââ dpc-covid19-dati-pagamenti-contratti-dpc-forniture.csv
â âââ dati-json
â â âââ dpc-covid19-dati-contratti-dpc-forniture.csv
â â âââ dpc-covid19-dati-pagamenti-contratti-dpc-forniture.csv
â âââ file-atti-negoziali
â â âââ dpc-contratto-covid19-*.pdf
âââ dati-json/
â âââ dpc-covid19-ita-andamento-nazionale-latest.json
â âââ dpc-covid19-ita-andamento-nazionale.json
â âââ dpc-covid19-ita-note-en.json
â âââ dpc-covid19-ita-note-it.json
â âââ dpc-covid19-ita-province-latest.json
â âââ dpc-covid19-ita-province.json
â âââ dpc-covid19-ita-regioni-latest.json
â âââ dpc-covid19-ita-regioni.json
âââ dati-province/
â âââ dpc-covid19-ita-province-*.csv
â âââ dpc-covid19-ita-province-latest.csv
â âââ dpc-covid19-ita-province.csv
âââ dati-regioni/
â âââ dpc-covid19-ita-regioni-*.csv
â âââ dpc-covid19-ita-regioni-latest.csv
â âââ dpc-covid19-ita-regioni.csv
âââ metriche
â âââ dpc-covid19-ita-metriche-dashboard-desktop.csv
â âââ dpc-covid19-ita-metriche-dashboard-desktop.json
â âââ dpc-covid19-ita-metriche-dashboard-mobile.csv
â âââ dpc-covid19-ita-metriche-dashboard-mobile.json
âââ note/
â âââ dpc-covid19-ita-note-en.csv
â âââ dpc-covid19-ita-note-it.csv
âââ schede-riepilogative/
â âââ province
â â âââ dpc-covid19-ita-scheda-province-*.pdf
â âââ regioni
â â âââ dpc-covid19-ita-scheda-regioni-*.pdf
Aggiornamento e flusso dei dati
- Dati andamento COVID-19 Italia: ogni giorno alle 18:00
- Dati contratti DPC COVID-19 di fornitura: continua (ogni volta che vengono effettuate operazioni sui contratti)
- Regioni: entro le 16:30 compilano i dati su un applicativo dellâIstituto Superiore di Sanità (controllo dati applicativo - warning)
- Ministero della Salute: entro le 17:30 verifica e invia i dati al DPC (controllo dati applicativo e visivo - certificazione dei dati)
- Dipartimento della Protezione Civile: entro le 18:00 controllo della qualità dei dati, elaborazione dei dataset e pubblicazione su GitHub e Dashboard ArcGIS (controllo dati applicativo - analisi)
- Società civile (Community): segnalazioni attraverso GitHub issue
Formato dei dati
- Dati andamento COVID-19 Italia
- Dati contratti DPC COVID-19 di fornitura
- Dati aree misure restrittive COVID19
- Metriche
Licenza
Top Related Projects
Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE
Data on COVID-19 (coronavirus) cases, deaths, hospitalizations, tests • All countries • Updated daily by Our World in Data
COVID-19 App
Coronavirus tracker app for iOS & macOS with maps & charts
Tracking the impact of COVID-19 in India
Convert designs to code with AI
Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.
Try Visual Copilot