Convert Figma logo to code with AI

sass logodart-sass

The reference implementation of Sass, written in Dart.

3,893
350
3,893
85

Top Related Projects

49,128

Modern CSS framework based on Flexbox

169,947

The most popular HTML, CSS, and JavaScript framework for developing responsive, mobile first projects on the web.

A utility-first CSS framework for rapid UI development.

The most advanced responsive front-end framework in the world. Quickly create prototypes and production code for sites that work on any kind of device.

Visual primitives for the component age. Use the best bits of ES6 and CSS to style your apps without stress 💅

17,396

👩‍🎤 CSS-in-JS library designed for high performance style composition

Quick Overview

Dart Sass is a Sass compiler written in Dart, a modern, open-source, and object-oriented programming language. It is the official implementation of the Sass language and aims to provide a fast, efficient, and reliable way to compile Sass stylesheets into CSS.

Pros

  • Performance: Dart Sass is significantly faster than the original Ruby-based Sass implementation, making it a more efficient choice for large-scale projects.
  • Compatibility: Dart Sass aims to be fully compatible with the Sass language specification, ensuring a seamless transition for existing Sass users.
  • Portability: As a Dart-based project, Dart Sass can be easily integrated into a wide range of development environments, including web, mobile, and server-side applications.
  • Actively Maintained: The Dart Sass project is actively maintained by the Sass team, ensuring regular updates, bug fixes, and feature enhancements.

Cons

  • Dart Dependency: Dart Sass requires the Dart runtime to be installed, which may not be a familiar environment for some developers who are more comfortable with other languages and ecosystems.
  • Learning Curve: Developers who are new to Dart may need to invest time in learning the language and its ecosystem, which could be a barrier for some users.
  • Limited Ecosystem: Compared to the broader JavaScript ecosystem, the Dart ecosystem may have fewer third-party libraries and tools available, which could limit the options for integrating Dart Sass into certain projects.
  • Adoption: While Dart Sass is the official Sass implementation, the original Ruby-based Sass may still be more widely used, especially in legacy projects or environments where Dart is not a common choice.

Code Examples

Here are a few examples of how to use Dart Sass:

  1. Compiling a Sass file to CSS:
import 'package:sass/sass.dart' as sass;

void main() {
  var result = sass.compileString('''
    $primary-color: #007bff;

    body {
      color: $primary-color;
    }
  ''');

  print(result.css);
}
  1. Importing Sass partials:
import 'package:sass/sass.dart' as sass;

void main() {
  var result = sass.compileString('''
    @import 'variables';

    body {
      color: $primary-color;
    }
  ''', inputUrl: 'main.scss');

  print(result.css);
}
  1. Using Sass functions:
import 'package:sass/sass.dart' as sass;

void main() {
  var result = sass.compileString('''
    @function lighten-by-10($color) {
      @return lighten($color, 10%);
    }

    body {
      color: lighten-by-10(#007bff);
    }
  ''');

  print(result.css);
}
  1. Handling Sass errors:
import 'package:sass/sass.dart' as sass;

void main() {
  try {
    var result = sass.compileString('''
      body {
        color: $undefined-variable;
      }
    ''');

    print(result.css);
  } catch (e) {
    print('Sass compilation error: $e');
  }
}

Getting Started

To get started with Dart Sass, follow these steps:

  1. Install Dart on your system. You can download it from the official Dart website: https://dart.dev/get-dart

  2. Create a new Dart project or add Dart Sass to an existing one. You can do this using your preferred IDE or the Dart command-line tool.

  3. Add the sass package to your project's dependencies in the pubspec.yaml file:

dependencies:
  sass: ^1.57.1
  1. Import the sass package in your Dart code and start using the sass.compileString() or sass.compileFile() functions to compile your Sass stylesh

Competitor Comparisons

49,128

Modern CSS framework based on Flexbox

Pros of Bulma

  • Bulma is a complete CSS framework, providing a wide range of pre-built components and utilities, making it easier to build responsive and visually appealing web applications.
  • Bulma has a strong focus on mobile-first design, ensuring that websites built with it are optimized for various screen sizes.
  • Bulma's modular architecture allows developers to include only the components they need, reducing the overall file size and improving performance.

Cons of Bulma

  • Bulma is a relatively large framework, which may not be suitable for projects that require a more lightweight solution.
  • Bulma's customization options are limited compared to Sass, which provides more flexibility in terms of creating custom styles and themes.
  • Bulma's documentation, while comprehensive, may not be as detailed or user-friendly as some developers would prefer.

Code Comparison

Sass (Dart Sass):

$primary: #007bff;
$secondary: #6c757d;

.btn {
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
  font-size: 1rem;
  font-weight: 400;
  line-height: 1.5;
  transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out;

  &.btn-primary {
    color: #fff;
    background-color: $primary;
    border-color: $primary;
  }
}

Bulma:

<button class="button is-primary">Primary Button</button>
169,947

The most popular HTML, CSS, and JavaScript framework for developing responsive, mobile first projects on the web.

Pros of Bootstrap

  • Extensive documentation and community support
  • Wide range of pre-built components and utilities
  • Responsive design out of the box

Cons of Bootstrap

  • Larger file size compared to Dart Sass
  • Opinionated design that may not fit all use cases
  • Potential for overuse of Bootstrap classes in projects

Code Comparison

Dart Sass:

$font-stack: Helvetica, sans-serif;
$primary-color: #333;

body {
  font: 100% $font-stack;
  color: $primary-color;
}

Bootstrap:

$font-family-base: Helvetica, sans-serif;
$body-color: #333;

body {
  font-family: $font-family-base;
  color: $body-color;
}

The key differences are that Dart Sass uses a more concise syntax, while Bootstrap provides a more extensive set of variables and mixins for customization.

A utility-first CSS framework for rapid UI development.

Pros of Tailwind CSS

  • Rapid Development: Tailwind CSS provides a comprehensive set of utility classes that allow developers to quickly build and style web applications without the need for custom CSS.
  • Consistency: By using a consistent set of utility classes, Tailwind CSS helps maintain a cohesive design across an entire application.
  • Flexibility: Tailwind CSS is highly customizable, allowing developers to extend and modify the default styles to fit their specific needs.

Cons of Tailwind CSS

  • Increased File Size: Tailwind CSS can result in larger CSS files compared to traditional CSS approaches, as it includes all the utility classes by default.
  • Learning Curve: Developers new to Tailwind CSS may need to invest time in understanding the utility class naming conventions and how to effectively use them.
  • Separation of Concerns: Some developers may prefer a more traditional approach where CSS is separated from HTML, as Tailwind CSS encourages a more tightly coupled relationship between the two.

Code Comparison

Sass (Dart Sass):

$primary-color: #007bff;
$secondary-color: #6c757d;

.btn {
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
  font-size: 1rem;
  font-weight: 400;
  line-height: 1.5;
  transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out;

  &.btn-primary {
    color: #fff;
    background-color: $primary-color;
    border-color: $primary-color;

    &:hover {
      color: #fff;
      background-color: darken($primary-color, 10%);
      border-color: darken($primary-color, 10%);
    }
  }
}

Tailwind CSS:

<button class="bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded">
  Button
</button>

The most advanced responsive front-end framework in the world. Quickly create prototypes and production code for sites that work on any kind of device.

Pros of Foundation

  • Foundation provides a comprehensive set of pre-built components and utilities, making it easier to quickly build responsive and mobile-first web applications.
  • The framework has a large and active community, providing a wealth of resources, plugins, and extensions.
  • Foundation's documentation is well-organized and easy to navigate, making it accessible for developers of all skill levels.

Cons of Foundation

  • Foundation's codebase can be larger and more complex than Dart Sass, which may result in a larger bundle size for your project.
  • The framework's flexibility and feature-richness can be overkill for simpler projects, where a more lightweight solution like Dart Sass might be more appropriate.

Code Comparison

Dart Sass

$primary-color: #007bff;
$secondary-color: #6c757d;

.btn {
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
  font-size: 1rem;
  font-weight: 400;
  line-height: 1.5;
  color: #fff;
  background-color: $primary-color;
  border-color: $primary-color;
}

Foundation

$primary-color: #1779ba;
$secondary-color: #767676;

.button {
  display: inline-block;
  vertical-align: middle;
  margin: 0 0 1rem 0;
  padding: 0.85em 1em;
  border: 1px solid transparent;
  border-radius: 0;
  transition: background-color 0.25s ease-out, color 0.25s ease-out;
  font-family: inherit;
  font-size: 0.9rem;
  -webkit-appearance: none;
  line-height: 1;
  text-align: center;
  cursor: pointer;
}

Visual primitives for the component age. Use the best bits of ES6 and CSS to style your apps without stress 💅

Pros of styled-components/styled-components

  • Automatic Vendor Prefixing: styled-components automatically adds vendor prefixes to CSS properties, ensuring consistent cross-browser compatibility.
  • Dynamic Styling: styled-components allows for dynamic styling based on component props, making it easier to create responsive and adaptive designs.
  • Scoped Styles: styled-components ensures that styles are scoped to the component, preventing global style conflicts.

Cons of styled-components/styled-components

  • Increased Complexity: The use of a CSS-in-JS solution like styled-components can add complexity to the codebase, especially for developers unfamiliar with the approach.
  • Performance Concerns: Depending on the size and complexity of the application, the runtime overhead of CSS-in-JS solutions like styled-components may impact performance.

Code Comparison

Sass (Dart Sass):

.button {
  background-color: #007bff;
  color: #fff;
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
}

styled-components:

import styled from 'styled-components';

const Button = styled.button`
  background-color: #007bff;
  color: #fff;
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
`;
17,396

👩‍🎤 CSS-in-JS library designed for high performance style composition

Pros of Emotion

  • Flexibility: Emotion provides a more flexible and customizable approach to styling, allowing developers to write styles directly in their JavaScript/TypeScript code.
  • Performance: Emotion is known for its performance, with a focus on optimizing the generated CSS and minimizing the runtime overhead.
  • Theming: Emotion makes it easy to implement and manage themes, which can be particularly useful in complex applications.

Cons of Emotion

  • Learning Curve: Emotion's approach to styling may require a steeper learning curve for developers who are more familiar with traditional CSS-in-files workflows.
  • Tooling Integration: Emotion may not have as robust tooling integration as Sass, which has been widely adopted and has a large ecosystem of tools and plugins.

Code Comparison

Sass (Dart Sass):

.button {
  background-color: #007bff;
  color: #fff;
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
  border: none;
  cursor: pointer;

  &:hover {
    background-color: #0056b3;
  }
}

Emotion:

import styled from '@emotion/styled';

const Button = styled.button`
  background-color: #007bff;
  color: #fff;
  padding: 0.5rem 1rem;
  border-radius: 0.25rem;
  border: none;
  cursor: pointer;

  &:hover {
    background-color: #0056b3;
  }
`;

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README

A Dart implementation of Sass. Sass makes CSS fun.

Sass logo npm statistics Pub version
GitHub actions build status
@sass@front-end.social on Fediverse
@SassCSS on Twitter
stackoverflow
Gitter

Using Dart Sass

There are a few different ways to install and run Dart Sass, depending on your environment and your needs.

From Chocolatey or Scoop (Windows)

If you use the Chocolatey package manager or the Scoop package manager for Windows, you can install Dart Sass by running

choco install sass

or

scoop install sass

That'll give you a sass executable on your command line that will run Dart Sass. See the CLI docs for details.

From Homebrew (macOS or Linux)

If you use the Homebrew package manager, you can install Dart Sass by running

brew install sass/sass/sass

That'll give you a sass executable on your command line that will run Dart Sass.

Standalone

You can download the standalone Dart Sass archive for your operating system—containing the Dart VM and the snapshot of the executable—from the GitHub release page. Extract it, add the directory to your path, restart your terminal, and the sass executable is ready to run!

From npm

Dart Sass is available, compiled to JavaScript, as an npm package. You can install it globally using npm install -g sass which will provide access to the sass executable. You can also add it to your project using npm install --save-dev sass. This provides the executable as well as a library:

const sass = require('sass');

const result = sass.compile(scssFilename);

// OR

// Note that `compileAsync()` is substantially slower than `compile()`.
const result = await sass.compileAsync(scssFilename);

See the Sass website for full API documentation.

Dart Sass in the Browser

The sass npm package can also be run directly in the browser. It's compatible with all major web bundlers as long as you disable renaming (such as --keep-names in esbuild). You can also import it directly from a browser as an ECMAScript Module without any bundling (assuming node_modules is served as well):

<script type="importmap">
  {
    "imports": {
      "immutable": "./node_modules/immutable/dist/immutable.es.js",
      "sass": "./node_modules/sass/sass.default.js"
    }
  }
</script>

<!-- Support browsers like Safari 16.3 without import maps support. -->
<script async src="https://unpkg.com/es-module-shims@^1.7.0" crossorigin="anonymous"></script>

<script type="module">
  import * as sass from 'sass';

  console.log(sass.compileString(`
    .box {
      width: 10px + 15px;
    }
  `));
</script>

Or from a CDN:

<script type="importmap">
  {
    "imports": {
      "immutable": "https://unpkg.com/immutable@^4.0.0",
      "sass": "https://unpkg.com/sass@^1.63.0/sass.default.js"
    }
  }
</script>

<!-- Support browsers like Safari 16.3 without import maps support. -->
<script async src="https://unpkg.com/es-module-shims@^1.7.0" crossorigin="anonymous"></script>

<script type="module">
  import * as sass from 'sass';

  console.log(sass.compileString(`
    .box {
      width: 10px + 15px;
    }
  `));
</script>

Or even bundled with all its dependencies:

<script type="module">
  import * as sass from 'https://jspm.dev/sass';

  console.log(sass.compileString(`
    .box {
      width: 10px + 15px;
    }
  `));
</script>

Since the browser doesn't have access to the filesystem, the compile() and compileAsync() functions aren't available for it. If you want to load other files, you'll need to pass a custom importer to compileString() or compileStringAsync(). The legacy API is also not supported in the browser.

Legacy JavaScript API

Dart Sass also supports an older JavaScript API that's fully compatible with Node Sass (with a few exceptions listed below), with support for both the render() and renderSync() functions. This API is considered deprecated and will be removed in Dart Sass 2.0.0, so it should be avoided in new projects.

Sass's support for the legacy JavaScript API has the following limitations:

  • Only the "expanded" and "compressed" values of outputStyle are supported.

  • Dart Sass doesn't support the precision option. Dart Sass defaults to a sufficiently high precision for all existing browsers, and making this customizable would make the code substantially less efficient.

  • Dart Sass doesn't support the sourceComments option. Source maps are the recommended way of locating the origin of generated selectors.

Using Sass with Jest

If you're using Jest to run your tests, be aware that it has a longstanding bug where its default test environment breaks JavaScript's built-in instanceof operator. Dart Sass's JS package uses instanceof fairly heavily, so in order to avoid breaking Sass you'll need to install jest-environment-node-single-context and add testEnvironment: 'jest-environment-node-single-context' to your Jest config.

From Pub

If you're a Dart user, you can install Dart Sass globally using pub global activate sass, which will provide a sass executable. You can also add it to your pubspec and use it as a library. We strongly recommend importing it with the prefix sass:

import 'package:sass/sass.dart' as sass;

void main(List<String> args) {
  print(sass.compile(args.first));
}

See the Dart API docs for details.

sass_api Package

Dart users also have access to more in-depth APIs via the sass_api package. This provides access to the Sass AST and APIs for resolving Sass loads without running a full compilation. It's separated out into its own package so that it can increase its version number independently of the main sass package.

From Source

Assuming you've already checked out this repository:

  1. Install Dart. If you download an archive manually rather than using an installer, make sure the SDK's bin directory is on your PATH.

  2. Install Buf. This is used to build the protocol buffers for the embedded compiler.

  3. In this repository, run dart pub get. This will install Dart Sass's dependencies.

  4. Run dart run grinder protobuf. This will download and build the embedded protocol definition.

  5. Run dart bin/sass.dart path/to/file.scss.

That's it!

In Docker

You can install and run Dart Sass within Docker using the following Dockerfile commands:

# Dart stage
FROM bufbuild/buf AS buf
FROM dart:stable AS dart

# Add your scss files
COPY --from=another_stage /app /app

# Include Protocol Buffer binary
COPY --from=buf /usr/local/bin/buf /usr/local/bin/

WORKDIR /dart-sass
RUN git clone https://github.com/sass/dart-sass.git . && \
  dart pub get && \
  dart run grinder protobuf
# This is where you run sass.dart on your scss file(s)
RUN dart ./bin/sass.dart /app/sass/example.scss /app/public/css/example.css

Why Dart?

Dart Sass has replaced Ruby Sass as the canonical implementation of the Sass language. We chose Dart because it presented a number of advantages:

  • It's fast. The Dart VM is highly optimized, and getting faster all the time (for the latest performance numbers, see perf.md). It's much faster than Ruby, and close to par with C++.

  • It's portable. The Dart VM has no external dependencies and can compile applications into standalone snapshot files, so we can distribute Dart Sass as only three files (the VM, the snapshot, and a wrapper script). Dart can also be compiled to JavaScript, which makes it easy to distribute Sass through npm, which the majority of our users use already.

  • It's easy to write. Dart is a higher-level language than C++, which means it doesn't require lots of hassle with memory management and build systems. It's also statically typed, which makes it easier to confidently make large refactors than with Ruby.

  • It's friendlier to contributors. Dart is substantially easier to learn than Ruby, and many Sass users in Google in particular are already familiar with it. More contributors translates to faster, more consistent development.

Compatibility Policy

For the most part, Dart Sass follows semantic versioning. We consider all of the following to be part of the versioned API:

  • The Sass language semantics implemented by Dart Sass.
  • The Dart API.
  • The JavaScript API.
  • The command-line interface.

Because Dart Sass has a single version that's shared across the Dart, JavaScript, and standalone distributions, this may mean that we increment the major version number when there are in fact no breaking changes for one or more distributions. However, we will attempt to limit the number of breaking changes we make and group them in as few releases as possible to minimize churn. We strongly encourage users to use the changelog for a full understanding of all the changes in each release.

There is one exception where breaking changes may be made outside of a major version revision. It is occasionally the case that CSS adds a feature that's incompatible with existing Sass syntax in some way. Because Sass is committed to full CSS compatibility, we occasionally need to break compatibility with old Sass code in order to remain compatible with CSS.

In these cases, we will first release a version of Sass that emits deprecation warnings for any stylesheets whose behavior will change. Then, at least three months after the release of a version with these deprecation warnings, we will release a minor version with the breaking change to the Sass language semantics.

Browser Compatibility

In general, we consider any change to Dart Sass's CSS output that would cause that CSS to stop working in a real browser to be a breaking change. However, there are some cases where such a change would have substantial benefits and would only negatively affect a small minority of rarely-used browsers. We don't want to have to block such a change on a major version release.

As such, if a change would break compatibility with less than 2% of the global market share of browser according to StatCounter GlobalStats, we may release a minor version of Dart Sass with that change.

Node.js Compatibility

We consider dropping support for a given version of Node.js to be a breaking change as long as that version is still supported by Node.js. This means that releases listed as Current, Active LTS, or Maintenance LTS according to the Node.js release page. Once a Node.js version is out of LTS, Dart Sass considers itself free to break support if necessary.

Invalid CSS

Changes to the behavior of Sass stylesheets that produce invalid CSS output are not considered breaking changes. Such changes are almost always necessary when adding support for new CSS features, and delaying all such features until a new major version would be unduly burdensome for most users.

For example, when Sass began parsing calc() expressions, the invalid expression calc(1 +) became a Sass error where before it was passed through as-is. This was not considered a breaking change, because calc(1 +) was never valid CSS to begin with.

Embedded Dart Sass

Dart Sass includes an implementation of the compiler side of the Embedded Sass protocol. It's designed to be embedded in a host language, which then exposes an API for users to invoke Sass and define custom functions and importers.

Usage

  • sass --embedded starts the embedded compiler and listens on stdin.
  • sass --embedded --version prints versionResponse with id = 0 in JSON and exits.

The --embedded command-line flag is not available when you install Dart Sass as an npm package. No other command-line flags are supported with --embedded.

Behavioral Differences from Ruby Sass

There are a few intentional behavioral differences between Dart Sass and Ruby Sass. These are generally places where Ruby Sass has an undesired behavior, and it's substantially easier to implement the correct behavior than it would be to implement compatible behavior. These should all have tracking bugs against Ruby Sass to update the reference behavior.

  1. @extend only accepts simple selectors, as does the second argument of selector-extend(). See issue 1599.

  2. Subject selectors are not supported. See issue 1126.

  3. Pseudo selector arguments are parsed as <declaration-value>s rather than having a more limited custom parsing. See issue 2120.

  4. The numeric precision is set to 10. See issue 1122.

  5. The indented syntax parser is more flexible: it doesn't require consistent indentation across the whole document. See issue 2176.

  6. Colors do not support channel-by-channel arithmetic. See issue 2144.

  7. Unitless numbers aren't == to unit numbers with the same value. In addition, map keys follow the same logic as ==-equality. See issue 1496.

  8. rgba() and hsla() alpha values with percentage units are interpreted as percentages. Other units are forbidden. See issue 1525.

  9. Too many variable arguments passed to a function is an error. See issue 1408.

  10. Allow @extend to reach outside a media query if there's an identical @extend defined outside that query. This isn't tracked explicitly, because it'll be irrelevant when issue 1050 is fixed.

  11. Some selector pseudos containing placeholder selectors will be compiled where they wouldn't be in Ruby Sass. This better matches the semantics of the selectors in question, and is more efficient. See issue 2228.

  12. The old-style :property value syntax is not supported in the indented syntax. See issue 2245.

  13. The reference combinator is not supported. See issue 303.

  14. Universal selector unification is symmetrical. See issue 2247.

  15. @extend doesn't produce an error if it matches but fails to unify. See issue 2250.

  16. Dart Sass currently only supports UTF-8 documents. We'd like to support more, but Dart currently doesn't support them. See dart-lang/sdk#11744, for example.

Disclaimer: this is not an official Google product.

NPM DownloadsLast 30 Days