Convert Figma logo to code with AI

unionai-oss logopandera

A light-weight, flexible, and expressive statistical data testing library

3,473
315
3,473
400

Top Related Projects

Always know what to expect from your data.

21,665

Data validation using Python type hints

3,474

A light-weight, flexible, and expressive statistical data testing library

Clean APIs for data cleaning. Python implementation of R package Janitor

2,416

Synthetic data generation for tabular data

1,015

Intake is a lightweight package for finding, investigating, loading and disseminating data.

Quick Overview

Pandera is a statistical data validation toolkit for Python that provides a flexible and expressive API for defining data schemas and validating pandas DataFrames. It allows users to define schema objects that can be used to validate data, generate synthetic data, and create data types with built-in validation.

Pros

  • Seamless integration with pandas and numpy ecosystems
  • Supports both runtime validation and static type checking
  • Provides informative error messages for failed validations
  • Allows for custom validation functions and hypothesis strategies

Cons

  • May introduce performance overhead for large datasets
  • Learning curve for users unfamiliar with schema validation concepts
  • Limited support for non-pandas data structures
  • Some advanced features require additional dependencies

Code Examples

  1. Defining a simple schema:
import pandera as pa

schema = pa.DataFrameSchema({
    "column1": pa.Column(int, pa.Check.greater_than(0)),
    "column2": pa.Column(str, pa.Check.isin(["A", "B", "C"])),
    "column3": pa.Column(float, pa.Check.between(0, 1))
})
  1. Validating a DataFrame:
import pandas as pd

df = pd.DataFrame({
    "column1": [1, 2, 3],
    "column2": ["A", "B", "C"],
    "column3": [0.1, 0.5, 0.9]
})

validated_df = schema.validate(df)
  1. Using decorators for function input validation:
@pa.check_input(schema)
def process_data(df: pd.DataFrame) -> pd.DataFrame:
    # Your data processing logic here
    return df

Getting Started

To get started with Pandera, install it using pip:

pip install pandera

Then, import the library and create a simple schema:

import pandera as pa
import pandas as pd

schema = pa.DataFrameSchema({
    "name": pa.Column(str),
    "age": pa.Column(int, pa.Check.greater_than(0)),
    "city": pa.Column(str, pa.Check.isin(["New York", "London", "Tokyo"]))
})

df = pd.DataFrame({
    "name": ["Alice", "Bob", "Charlie"],
    "age": [25, 30, 35],
    "city": ["New York", "London", "Paris"]
})

try:
    validated_df = schema.validate(df)
except pa.errors.SchemaError as e:
    print(f"Validation failed: {e}")

This example creates a simple schema, defines a DataFrame, and attempts to validate it against the schema. If validation fails, it will print an error message.

Competitor Comparisons

Always know what to expect from your data.

Pros of Great Expectations

  • More comprehensive data validation framework with a wider range of built-in expectations
  • Supports multiple data sources including databases, cloud storage, and file systems
  • Provides data documentation and profiling capabilities

Cons of Great Expectations

  • Steeper learning curve due to its more complex architecture
  • Heavier setup and configuration process
  • Can be overkill for simpler data validation tasks

Code Comparison

Great Expectations:

import great_expectations as ge

df = ge.read_csv("data.csv")
df.expect_column_values_to_be_between("age", min_value=0, max_value=120)

Pandera:

import pandera as pa

schema = pa.DataFrameSchema({
    "age": pa.Column(int, pa.Check.in_range(0, 120))
})
schema.validate(df)

Both libraries offer data validation capabilities, but Great Expectations provides a more comprehensive framework with additional features, while Pandera focuses on simplicity and ease of use for DataFrame validation.

21,665

Data validation using Python type hints

Pros of Pydantic

  • Broader scope, supporting general data validation and serialization
  • Integrated with FastAPI for API development
  • More extensive ecosystem and community support

Cons of Pydantic

  • Less specialized for pandas DataFrame validation
  • May require more setup for complex DataFrame schemas

Code Comparison

Pydantic:

from pydantic import BaseModel, Field

class User(BaseModel):
    id: int
    name: str = Field(..., min_length=1)
    age: int = Field(..., ge=0, le=120)

Pandera:

import pandera as pa

schema = pa.DataFrameSchema({
    "id": pa.Column(int),
    "name": pa.Column(str, pa.Check(lambda x: len(x) > 0)),
    "age": pa.Column(int, pa.Check.in_range(0, 120))
})

Pydantic is more general-purpose, while Pandera is tailored for DataFrame validation. Pydantic's syntax is class-based, whereas Pandera uses a more DataFrame-centric approach. Both libraries offer robust data validation, but Pandera's focus on DataFrames makes it more intuitive for pandas users working with tabular data.

3,474

A light-weight, flexible, and expressive statistical data testing library

Pros of Pandera

  • Identical functionality and features
  • Same level of community support and development
  • Consistent documentation and examples

Cons of Pandera

  • No significant differences in drawbacks
  • Equivalent performance characteristics
  • Similar learning curve for new users

Code Comparison

Both repositories contain the same codebase, so a code comparison is not applicable. Here's a sample of how to use Pandera in both cases:

import pandera as pa

schema = pa.DataFrameSchema({
    "column1": pa.Column(int),
    "column2": pa.Column(float, pa.Check.greater_than(0)),
    "column3": pa.Column(str, pa.Check.isin(["A", "B", "C"]))
})

validated_df = schema.validate(df)

This code would work identically in both repositories, as they are the same project.

Clean APIs for data cleaning. Python implementation of R package Janitor

Pros of pyjanitor

  • Focuses on data cleaning and preparation tasks with a wide range of functions
  • Provides a more intuitive API for common data manipulation operations
  • Integrates well with pandas and extends its functionality

Cons of pyjanitor

  • Less emphasis on data validation compared to Pandera
  • May have a steeper learning curve for users not familiar with method chaining
  • Limited schema definition capabilities

Code Comparison

pyjanitor:

import janitor
import pandas as pd

df = pd.DataFrame(...)
cleaned_df = (
    df.clean_names()
    .remove_empty()
    .drop_duplicate_columns()
    .encode_categorical()
)

Pandera:

import pandera as pa

schema = pa.DataFrameSchema({
    "column1": pa.Column(int, nullable=False),
    "column2": pa.Column(str, checks=pa.Check.str_length(1, 100))
})

validated_df = schema.validate(df)

The code examples highlight the different focus areas of each library. pyjanitor emphasizes data cleaning operations, while Pandera focuses on schema definition and validation.

2,416

Synthetic data generation for tabular data

Pros of SDV

  • Comprehensive synthetic data generation capabilities
  • Supports multiple data types (tabular, time series, relational)
  • Includes advanced features like privacy preservation and constraints

Cons of SDV

  • Steeper learning curve due to more complex functionality
  • May be overkill for simple data validation tasks
  • Potentially slower performance for large datasets

Code Comparison

SDV (Synthetic Data Generation):

from sdv import Tabular

model = Tabular('my_table')
model.fit(real_data)
synthetic_data = model.sample(num_rows=1000)

Pandera (Data Validation):

import pandera as pa

schema = pa.DataFrameSchema({
    'column1': pa.Column(int),
    'column2': pa.Column(str, pa.Check.str_length(1, 100))
})
validated_df = schema.validate(df)

SDV focuses on generating synthetic data that mimics real datasets, while Pandera specializes in data validation and schema enforcement. SDV offers more comprehensive data generation capabilities, but Pandera provides a simpler and more lightweight approach to ensuring data quality and consistency.

1,015

Intake is a lightweight package for finding, investigating, loading and disseminating data.

Pros of Intake

  • Broader data source support, including remote and cloud-based sources
  • Flexible catalog system for organizing and discovering data assets
  • Built-in data visualization capabilities

Cons of Intake

  • Less focused on data validation and schema enforcement
  • May require more setup for complex data pipelines
  • Limited support for advanced statistical checks

Code Comparison

Intake:

import intake

catalog = intake.open_catalog("my_catalog.yml")
dataset = catalog.my_dataset.read()

Pandera:

import pandera as pa

schema = pa.DataFrameSchema({
    "column1": pa.Column(int),
    "column2": pa.Column(str)
})
validated_df = schema.validate(df)

Intake focuses on data discovery and access, while Pandera emphasizes data validation and schema enforcement. Intake's code demonstrates catalog-based data loading, whereas Pandera's code shows schema definition and validation for pandas DataFrames.

Convert Figma logo designs to code with AI

Visual Copilot

Introducing Visual Copilot: A new AI model to turn Figma designs to high quality code using your components.

Try Visual Copilot

README


The Open-source Framework for Precision Data Testing

📊 🔎 ✅

Data validation for scientists, engineers, and analysts seeking correctness.


CI Build Documentation Status PyPI version shields.io PyPI license pyOpenSci Project Status: Active – The project has reached a stable, usable state and is being actively developed. Documentation Status codecov PyPI pyversions DOI asv Monthly Downloads Total Downloads Conda Downloads Discord

pandera is a Union.ai open source project that provides a flexible and expressive API for performing data validation on dataframe-like objects to make data processing pipelines more readable and robust.

Dataframes contain information that pandera explicitly validates at runtime. This is useful in production-critical or reproducible research settings. With pandera, you can:

  1. Define a schema once and use it to validate different dataframe types including pandas, polars, dask, modin, and pyspark.
  2. Check the types and properties of columns in a DataFrame or values in a Series.
  3. Perform more complex statistical validation like hypothesis testing.
  4. Parse data to standardize the preprocessing steps needed to produce valid data.
  5. Seamlessly integrate with existing data analysis/processing pipelines via function decorators.
  6. Define dataframe models with the class-based API with pydantic-style syntax and validate dataframes using the typing syntax.
  7. Synthesize data from schema objects for property-based testing with pandas data structures.
  8. Lazily Validate dataframes so that all validation checks are executed before raising an error.
  9. Integrate with a rich ecosystem of python tools like pydantic, fastapi, and mypy.

Documentation

The official documentation is hosted here: https://pandera.readthedocs.io

Install

Using pip:

pip install pandera

Using conda:

conda install -c conda-forge pandera

Extras

Installing additional functionality:

pip
pip install 'pandera[hypotheses]' # hypothesis checks
pip install 'pandera[io]'         # yaml/script schema io utilities
pip install 'pandera[strategies]' # data synthesis strategies
pip install 'pandera[mypy]'       # enable static type-linting of pandas
pip install 'pandera[fastapi]'    # fastapi integration
pip install 'pandera[dask]'       # validate dask dataframes
pip install 'pandera[pyspark]'    # validate pyspark dataframes
pip install 'pandera[modin]'      # validate modin dataframes
pip install 'pandera[modin-ray]'  # validate modin dataframes with ray
pip install 'pandera[modin-dask]' # validate modin dataframes with dask
pip install 'pandera[geopandas]'  # validate geopandas geodataframes
pip install 'pandera[polars]'     # validate polars dataframes
conda
conda install -c conda-forge pandera-hypotheses  # hypothesis checks
conda install -c conda-forge pandera-io          # yaml/script schema io utilities
conda install -c conda-forge pandera-strategies  # data synthesis strategies
conda install -c conda-forge pandera-mypy        # enable static type-linting of pandas
conda install -c conda-forge pandera-fastapi     # fastapi integration
conda install -c conda-forge pandera-dask        # validate dask dataframes
conda install -c conda-forge pandera-pyspark     # validate pyspark dataframes
conda install -c conda-forge pandera-modin       # validate modin dataframes
conda install -c conda-forge pandera-modin-ray   # validate modin dataframes with ray
conda install -c conda-forge pandera-modin-dask  # validate modin dataframes with dask
conda install -c conda-forge pandera-geopandas   # validate geopandas geodataframes
conda install -c conda-forge pandera-polars      # validate polars dataframes

Quick Start

import pandas as pd
import pandera as pa


# data to validate
df = pd.DataFrame({
    "column1": [1, 4, 0, 10, 9],
    "column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
    "column3": ["value_1", "value_2", "value_3", "value_2", "value_1"]
})

# define schema
schema = pa.DataFrameSchema({
    "column1": pa.Column(int, checks=pa.Check.le(10)),
    "column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
    "column3": pa.Column(str, checks=[
        pa.Check.str_startswith("value_"),
        # define custom checks as functions that take a series as input and
        # outputs a boolean or boolean Series
        pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
    ]),
})

validated_df = schema(df)
print(validated_df)

#     column1  column2  column3
#  0        1     -1.3  value_1
#  1        4     -1.4  value_2
#  2        0     -2.9  value_3
#  3       10    -10.1  value_2
#  4        9    -20.4  value_1

DataFrame Model

pandera also provides an alternative API for expressing schemas inspired by dataclasses and pydantic. The equivalent DataFrameModel for the above DataFrameSchema would be:

from pandera.typing import Series

class Schema(pa.DataFrameModel):

    column1: int = pa.Field(le=10)
    column2: float = pa.Field(lt=-1.2)
    column3: str = pa.Field(str_startswith="value_")

    @pa.check("column3")
    def column_3_check(cls, series: Series[str]) -> Series[bool]:
        """Check that values have two elements after being split with '_'"""
        return series.str.split("_", expand=True).shape[1] == 2

Schema.validate(df)

Development Installation

git clone https://github.com/pandera-dev/pandera.git
cd pandera
export PYTHON_VERSION=...  # specify desired python version
pip install -r dev/requirements-${PYTHON_VERSION}.txt
pip install -e .

Tests

pip install pytest
pytest tests

Contributing to pandera GitHub contributors

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide on GitHub.

Issues

Go here to submit feature requests or bugfixes.

Need Help?

There are many ways of getting help with your questions. You can ask a question on Github Discussions page or reach out to the maintainers and pandera community on Discord

Why pandera?

How to Cite

If you use pandera in the context of academic or industry research, please consider citing the paper and/or software package.

Paper

@InProceedings{ niels_bantilan-proc-scipy-2020,
  author    = { {N}iels {B}antilan },
  title     = { pandera: {S}tatistical {D}ata {V}alidation of {P}andas {D}ataframes },
  booktitle = { {P}roceedings of the 19th {P}ython in {S}cience {C}onference },
  pages     = { 116 - 124 },
  year      = { 2020 },
  editor    = { {M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut and {D}avid {S}hupe },
  doi       = { 10.25080/Majora-342d178e-010 }
}

Software Package

DOI

License and Credits

pandera is licensed under the MIT license and is written and maintained by Niels Bantilan (niels@union.ai)